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Dielectric control of Ag NP resonances Hybrid plasmonic systems (LSP + SPP)

08 1 12 14 18
& (10" m'y

Hu et al. J. Phys. Chem. C 114, 7509 (2010) Ghoshal et al., Appl. Phys. Lett. 94, 171108 (2009)

Voltage control of Au SP Tue 9.40am 6B LSP enhanced nonlinear absorption

A —

Wavedongth e}

Lumdee et al., ACS Nano 6, 6301 (2012) Toroghi et al, PRB 85, 045432 (2012)

Nanophotonics and Near-field Optics Group http://kik.creol.ucf.edu slide 2

Photonics, San Diego, CA

kik.creol.ucf.edu



APL 100, 183105 (2012)

1. Introduction: Nonlinear optical absorption and refraction

Plasmon resonant structures: approaches

2. Plasmon mediated electric field enhancement on spheres
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Enhanced nonlinear absorption using cascaded LSPs
APL 101, 13116 (2012)
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Nonlinear refraction and absorption @1

Applications of nonlinear refractive and absorptive materials

- Nonlinear transmission (e.g. sensor protection)
- beam shaping, beam steering
- all-optical switching (refractive or absorptive, waveguides or normal incidence)

- 3D displays
Holy grail for absorptive switching: low threshold NL absorption in thin film

Challenge: nonlinear optical response generally weak

= Extremely large irradiance needed to achieve any significant NL absorption

Question: Can plasmon resonances increase the nonlinear absorption
performance of switching materials?
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Nonlinear absorption for ultrafast switching @;

In absence of 21 order effects, polarization given by P =g, 7V E + £,y VE® +...

Afinite x® leads to (complex) changeinn:  n = ng + (M, + in,") |

= High irradiance can induce refraction or absorption

Requirements:

- Transparent at low power

- Linear response must be non-diffractive / low scattering  (effective medium)
- Thermally stable (non-spherical particles not ideal)

- Angle independent NL response  (effective medium needed, non diffractive)

- Phase matching?  NL response at fundamental frequency — not an issue

Best performance: small linear absorption o, large nonlinear absorption 3
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Enhancing local fields using surface plasmon resonance @

Known: large field strength = large nonlinear response

Expect : field enhancement will modify local nonlinear optical polarization

Questions:
- How does the localized surface plasmon resonance affect x® and n, ?
- How does the plasmon induced absorption affect the performance?

- Can we do better then individual spherical nanoparticles?

20nm dial
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Nanostructures for plasmon enhanced fields

Fractals of silver nanoparticles Shaped particles, gold nanostars

|Eout/E0|2

2E5

Prof. V. M. Shalaev Prof. Tuan Vo-Dinh

goo.gl/x5F55 goo.gl/Diile
Large field enhancement (~500x) Large enhancement (‘lightning rod’)
Confined in few hot-spots Several hot spots per NP, spacing < A
Spaced far apart ( > 1) Effective medium possible
Not effective medium = scatterer Thermally unstable (reshape at high |')

Possible solution: self-similar chain of nanoparticles (‘the world’s smallest fractal’)
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Outline &

APL 100, 183105 (2012)

2. Plasmon mediated electric field enhancement on spheres

Cascaded localized plasmons on coupled spheres . % e, e
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Cascaded plasmon resonance @

Isolated spherical plasmon resonant nanoparticles: known field enhancement

Fixed incident field strength E, = enhanced field inside and outside NP at A gp

Ein 3 Ep
Internal: o=t -
erma Gin Ey  &n+2g,
Ein 3 Em
External: Jout = E_o = m (at surface)

[ quasi-electrostatic limit / local dielectric function /  negligible radiation loss ]

In polymeric hosts, typically ¢,~2.25 = ¢,/= -45 = gy, = 13.5/Im[ey]

= Noble metals, maximum external field enhancements in polymer of 10-50 x

Further enhancement? shaping / extendedresenaters / coupled nanoresonators
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Fields around isolated sphere &

Isolated Ag nanoparticle (& =10nm) — Internal and external field enhancement
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Predicted field in indirectly excited localized surface plasmon

Stronger field near particle surface (10nm distance) = can drive another NP
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Multiply (E,../ E; ) and single NP response?

We would call this ‘multiplicative cascading’
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Detrimental effect of strong mutual interaction (‘hindering’)

Presence of second particle at 5nm edge-to-edge distance : mutual interaction
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Field enhancement
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Strong interaction = resonance shifts

Observe (severely) ‘hindered cascading’
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Near-multiplicative cascading at large size difference

Reduce volume of second particle
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= NP2 has only limited effect on NP1
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Effect of spacing on cascading

Cascaded field enhancement
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Bringing satellite particle closer = stronger fields, and more ‘hindering’
APL 100, 183105 (2012)
——NP2 ——NP1 =
200 - - Multiplicative enh. - Isolated NP d=40nm
_ - @
A I :
200 d=15nm
N
LuO
e : 1
W 200 - A d=12nm
/ - ®
1 1
T\
200 / d=10nm
‘@
.. . e
1 . 1 . 1 —T T \)\’\_\m‘a}?
400 410 420 400 410 420 430 e
Wavelength (nm) Wavelength (nm)

(hindered)

slide 13

Nanophotonics and Near-field Optics Group

2012 SPIE Optics and Photonics, San Diego, CA

http://kik.creol.ucf.edu

slide 14

kik.creol.ucf.edu



Ultimate cascading limit - concept ﬁ

What would be the ‘ultimate cascading limit’ for external field enhancement ?

Assume: make NP2 ‘infinitely’ small, bring ‘very’ close to surface of NP1

2
3
Max. external field: Guetin = Jout1 X Jourz =  Em (m)

2
3
Max internal field: Juctin = Jout1 X Jin2 = EméEn (m)

Spectral location : at the dipolar plasmon resonance

= Cascading enables large internal and external field
Enhances host two-photon fluorescence, NL absorption

and metal nonlinear absorption and refraction

Ultimate cascading limit - magnitude 6

Calculated internal and external enhancement spectra

5000 _ Field enhancement > 5000x
= I
g 4000 Predicted SERS enhancement ~10'5
L I
% 3000
S 2000 | Note: ratio |9/l = len/ &l
= i At resonance: factor2 (expected)
[0]
T 1000

400 420
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Does not include surface scattering / radiation loss / retardation / multipoles

Question: what kind of size differences and distances are needed?
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Ultimate cascading limit: size and spacing requirements

Calculated field enhancement vs. size and spacing for fixed & NP1 =10nm
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Note: need extreme sizes and spacings

Question: can we ignore radiation loss and multipoles?
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Full-field numerical simulation vs. point dipole model

APL 100, 183105 (2012)
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Example: Ag NP1 diameter 10 nm, NP2 diameter 1nm, spacing 9 nm

Compare dipole coupling model and full 3D numerical simulation
= good agreement, significant cascading

Goal: utilize cascaded enhancement in nonlinear metamaterial

Nanophotonics and Near-field Optics Group
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3. Nonlinear metamaterials using dissimilar nanospheres

Enhanced nonlinear absorption using cascaded LSPs
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“Artist’s” rendering of cascaded NL metamaterial

Systematic study of the effect of cascading on NLO switching:

- Choose fixed metal fill fraction (3%)

- Five structures, stepwise increase of size difference

This talk: Leverage nonlinear response of metal (host response also increases)

Nanophotonics and Near-field Optics Group
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NL susceptibility enhancement factor in dense structures @

Composite NL susceptibility can be written in terms of enhancement factors g:
Q) _ (3 ,,0) (3),,0)
Zc — TinYin Zin + fhgh Zh

Here: note fraction not included in enhancement factor.

Dense arrays: no simple analytical formulas

For known simulated linear field distribution, enhancement factors given by :

— | =2
E2|E| > V. =volume of inclusion
]
< \Z / or of host (j=in or h)

(E).

@ _

TR

- V =volume of unit cell

These represent enhancement of »3 contribution from host or inclusion,
relative to the expected value based on a homogeneous E distribution
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Effect of cascading on linear absorption @
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No size difference: one main absorption, small multipole peak
Large size difference: additional resonance feature present
Nature of resonances follows from field distribution at key frequencies
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Cascaded field enhancement @)

. X

w so };s Non-cascaded

o P A
0 -

375 400 425 450 475 500
i (nm)

Cascaded structure:  larger internal enhancement, new anti-symmetric mode

Question: how does cascading affect NL enhancement factors
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Complex enhancement of metal nonlinear response &

PRB 85, 45432 (2012) |

Phase (n rad)
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Complex enhancement of %) now shows two main resonances
Enhancement of antisymmetric mode increases as size difference is increased

Phase of enhancement at peaks : =.  New: phase of between resonances: 0
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Understanding the complex enhancement factor @

] 3 T E T B
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% (nm)
Increased damping leads to broadened resonances
At frequencies between modes, this results in an increased absorption

Magnitude of this effect is amplified by cascaded field enhancement
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Figure of merit for nonlinear absorption
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Example: assuming Im(y,,®)) = 10-'® m?/V2 calculate B/a vs. cascading

Result:  dramatically improved response compared to single particle size
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APL 101, 13116 (2012)
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4. Fabrication challenges: spherical vs. shape-optimized " ﬂ»
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Cascaded field enhancement in 2D compatible antennas ﬁ .
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Challenge — large area fabrication of cascaded nanoantennas

Thus far: nanospheres with large volume difference = large field enhancement

Ideal for high power image-preserving optical absorbing layers
- non-scattering (many closely spaced identical elements)
- spherical elements (surface melting = limited reshaping)

- large field enhancement factors, NLO response
Challenge: Not compatible with 2D fabrication?

Appears to be intrinsic problem: cascading requires

- Difference in volume to reduce ‘hindering’ (back action)

- ldentical resonance frequency needed for coupling

= Can only use particles with identical aspect ratio, making this 2D incompatible?
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Approach: shape optimization @

Challenge: keep thickness fixed, modify volume without changing A gp

Approach: ‘in-plane’ shape optimization.  First approach: use ellipsoids

Field enhancement: B _ &
’ EO &n + La(‘gm - Sh)

Dipolar resonance when

em=—(1/L, —1)ep, = —R g, (sphere: R=2)

Shape factor L, for ellipsoid with axis lengths a, b, ¢ :

bc ® 3 1 1 [l
L= 5[ @420+ + 2 dq E“%
0

Cc

b
Question: can we vary the shape while maintaining A gp?
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Effect of particle shape on resonance condition @
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Next: Consider shapes indicated by colored symbols APL 101, 13116 (2012)
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Field enhancement in shape optimized ellipsoids @

Numerical simulation of internal field enhancement in four shape tuned ellipsoids

Shapes with axes (a,b,c)

2.2nm, 0.58 nm, 5 nm

5.8nm, 2.1 nm, 5 nm

12.8 nm, 5 nm, 9.4 nm

20 nm, 5 nm, 60 nm

0 " " " " 1 " " " " 1 " " " " 1 " " " "
475 500 525 550 575

APL 101, 13116 (2012)
Wavelength (nm)

Success: different shape, same resonance frequency.. Retardation affects E,,,
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Cascaded field enhancement in shape tuned ellipsoid dimers

Combination of largest particle with either of the three smaller shapes

300
d =40nm d=25nm |  d=17nm Left: large spacing
I E, v 1000 | No hindering observed
I — V,=100 | Small enhancement
200 F—— V. =10 - b
— I — lIsolated I . i . .
o . . - . Middle: medium spacing
My I I Hindering for large NP,
100 - . e - - g Increased enhancement

| Right: small spacing
0 I / . I . Smallest NP: multiplicative,

450 500 550 450 500 550 450 500 550 Large enhancement

Wavelength (nm)

Success: significant cascading in shape optimized 2D compatible dimer antennas
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Conclusions @

APL 100, 183105 (2012)

- ldeal cascaded plasmon resonance can produce
field enhancement > 1000 in simple NP dimer

- Relatively large volume ratios needed (> 100)

- Assembling cascaded dimers into metamaterial
= dramatically enhanced NLO absorption and refraction

— Cascaded structures outperform non-cascaded structures E 'a S e o
. L) @
— Spherical shapes : thermally stable : o ) ‘@
b ' b .0
) ‘a_l S 1
- Nanosphere cascading incompatible with 2D nanofab APL 101, 13116 (2012)

(8] Ve = 1000 (blv.=10
[ ¥.=100 (v, =1000

&, £,

— Shape cascading : in-plane shape optimized resonance

— Better for low power applications (SERS, biosensing) ©
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