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Design and evaluation of cascaded plasmonic 
metamaterials

Pieter G. Kik

CREOL, The College of Optics and Photonics, UCF, Orlando, FL

Calculations and simulations:   Seyfollah Toroghi

ARO MURI    Engineered Multifunctional Nanophotonic Materials 
for Ultrafast Optical Switching
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Plasmon enhanced nanophotonics

Dielectric control of Ag NP resonances Hybrid plasmonic systems (LSP + SPP)

Voltage control of Au SP  Tue 9.40am 6B LSP enhanced nonlinear absorption

Hu et al. J. Phys. Chem. C 114, 7509 (2010) Ghoshal et al., Appl. Phys. Lett. 94, 171108 (2009)

Lumdee et al., ACS Nano 6, 6301 (2012) Toroghi et al, PRB 85, 045432 (2012)
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Outline

1. Introduction:  Nonlinear optical absorption and refraction

Plasmon resonant structures:  approaches

2. Plasmon mediated electric field enhancement on spheres

Cascaded localized plasmons on coupled spheres

3. Nonlinear metamaterials using dissimilar nanospheres

Enhanced nonlinear absorption using cascaded LSPs

4. Fabrication challenges:   spherical vs. shape-optimized

Cascaded field enhancement in 2D compatible antennas

APL 100, 183105 (2012)

PRB 85, 45432 (2012)

APL 101, 13116 (2012)
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Nonlinear refraction and absorption

Applications of nonlinear refractive and absorptive materials

- Nonlinear transmission  (e.g. sensor protection)

- beam shaping, beam steering

- all-optical switching   (refractive or absorptive, waveguides or normal incidence)

- 3D displays

Holy grail for absorptive switching:    low threshold NL absorption in thin film

Challenge:   nonlinear optical response generally weak

 Extremely large irradiance needed to achieve any significant NL absorption

Question: Can plasmon resonances increase the nonlinear absorption 
performance of switching materials?
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Nonlinear absorption for ultrafast switching

A finite (3) leads to (complex) change in n:      n   =   n0 +   (2’+  i 2’’)   I

 High irradiance can induce refraction or absorption

...3)3(
0

)1(
0  EEP In absence of 2nd order effects, polarization given by

Best performance: small linear absorption , large nonlinear absorption 

Requirements:

- Transparent at low power

- Linear response must be non-diffractive / low scattering      (effective medium)

- Thermally stable        (non-spherical particles not ideal)

- Angle independent NL response     (effective medium needed, non diffractive) 

- Phase matching?      NL response at fundamental frequency  not an issue
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Enhancing local fields using surface plasmon resonance

20nm diameter Ag particle in air
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Questions:    

- How does the localized surface plasmon resonance affect (3) and n2 ? 

- How does the plasmon induced absorption affect the performance?

- Can we do better then individual spherical nanoparticles?

Known:        large field strength  large nonlinear response

Expect :   field enhancement will modify local nonlinear optical polarization



2012 SPIE Optics and Photonics, San Diego, CA 4

NanoPhotonics and Near-field Optics Group, CREOL, UCF kik.creol.ucf.edu

Nanophotonics and Near-field Optics Group http://kik.creol.ucf.edu   slide 7

Nanostructures for plasmon enhanced fields

Fractals of silver nanoparticles

Prof. V. M. Shalaev 
goo.gl/x5F55

Large field enhancement (~500x)

Confined in few hot-spots

Spaced far apart  (  >  )

Not effective medium  scatterer

Shaped particles,  gold nanostars

Large enhancement (‘lightning rod’)

Several hot spots per NP, spacing < 

Effective medium possible

Thermally unstable (reshape at high I )

Prof. Tuan Vo-Dinh 
goo.gl/DiiIe

Possible solution: self-similar chain of nanoparticles (‘the world’s smallest fractal’)

|Eout/E0|2
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Outline

1. Introduction:  Nonlinear optical absorption and refraction

Plasmon resonant structures:  approaches

2. Plasmon mediated electric field enhancement on spheres

Cascaded localized plasmons on coupled spheres

3. Nonlinear metamaterials using dissimilar nanospheres

Enhanced nonlinear absorption using cascaded LSPs

4. Fabrication challenges:   spherical vs. shape-optimized

Cascaded field enhancement in 2D compatible antennas

APL 100, 183105 (2012)

PRB 85, 45432 (2012)

APL 101, 13116 (2012)
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Cascaded plasmon resonance

Isolated spherical plasmon resonant nanoparticles:  known field enhancement

Fixed incident field strength E0  enhanced field inside and outside NP at LSP

Internal:

External: (at surface)

[  quasi-electrostatic limit     /    local dielectric function     /     negligible radiation loss ]

In polymeric hosts,  typically   h  2.25   m =  - 4.5      ݃௜௡ ൎ 		௠ሿߝሾ݉ܫ	/	13.5		

 Noble metals, maximum external field enhancements in polymer of   10-50 

Further enhancement?  shaping /  extended resonators /   coupled nanoresonators
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Fields around isolated sphere

Isolated Ag nanoparticle  ( = 10nm)    Internal and external field enhancement
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Predicted field in indirectly excited localized surface plasmon

Stronger field near particle surface (10nm distance)   can drive another NP
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Multiply (Eloc / E0 )  and single NP response?

We would call this ‘multiplicative cascading’
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Detrimental effect of strong mutual interaction (‘hindering’)

Presence of second particle at 5nm edge-to-edge distance :  mutual interaction
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Strong interaction   resonance shifts

Observe  (severely)   ‘hindered cascading’ 
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Near-multiplicative cascading at large size difference

Reduce volume of second particle    NP2 has only limited effect on NP1 

Einc
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Effect of spacing on cascading

Bringing satellite particle closer   stronger fields, and more ‘hindering’
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APL 100, 183105 (2012)
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Ultimate cascading limit - concept

What would be the ‘ultimate cascading limit’ for external field enhancement ?

Assume:   make NP2 ‘infinitely’ small, bring ‘very’ close to surface of NP1

Max. external field: 

Max internal field: 

Spectral location :  at the dipolar plasmon resonance

 Cascading enables large internal and external field

Enhances host two-photon fluorescence, NL absorption

and metal nonlinear absorption and refraction

݃௨௖௟,௜௡ ൌ ݃௢௨௧,ଵ ൈ ݃௢௨௧,ଶ ൌ 					 ௠ଶߝ
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Ultimate cascading limit - magnitude

Calculated internal and external enhancement spectra

380 400 420 440
0

1000

2000

3000

4000

5000

6000

F
ie

ld
 e

n
h

a
n

c
e

m
e

n
t

wavelength (nm)

 Internal Ultimate cascading limit

380 400 420 440
0

1000

2000

3000

4000

5000

6000

F
ie

ld
 e

n
h

a
n

c
e

m
e

n
t

wavelength (nm)

 External Ultimate cascading limit

Does not include surface scattering / radiation loss / retardation / multipoles

Question:    what kind of   size differences and   distances are needed?
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Field enhancement > 5000x

Predicted SERS enhancement ~1015

Note:   ratio   |gout/gin|  =  |m/ h|

At resonance:   factor 2   (expected)
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Ultimate cascading limit:  size and spacing requirements

Calculated field enhancement vs. size and spacing for fixed   NP1 =10nm

Note:  need extreme sizes and spacings

Question:   can we ignore radiation loss and multipoles?

10nm4nm
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Example: Ag  NP1  diameter  10 nm,  NP2 diameter 1nm, spacing 9 nm

Compare dipole coupling model and full 3D numerical simulation

 good agreement, significant cascading

Goal:  utilize cascaded enhancement in nonlinear metamaterial

Full-field numerical simulation vs. point dipole model
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Outline

1. Introduction:  Nonlinear optical absorption and refraction

Plasmon resonant structures:  approaches

2. Plasmon mediated electric field enhancement on spheres

Cascaded localized plasmons on coupled spheres

3. Nonlinear metamaterials using dissimilar nanospheres

Enhanced nonlinear absorption using cascaded LSPs

4. Fabrication challenges:   spherical vs. shape-optimized

Cascaded field enhancement in 2D compatible antennas

APL 100, 183105 (2012)

PRB 85, 45432 (2012)

APL 101, 13116 (2012)
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Systematic study of the effect of cascading on NLO switching:

- Choose fixed metal fill fraction  (3%)

- Five structures,   stepwise increase of size difference

This talk:   Leverage nonlinear response of metal (host response also increases)

Cascaded plasmon resonant nonlinear metamaterials

“Artist’s”   rendering of cascaded NL metamaterial
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Composite NL susceptibility can be written in terms of enhancement factors g: 

Here:     note fraction not included in enhancement factor.  

Dense arrays:  no simple analytical formulas (near-field coupling, multipoles)

For known simulated linear field distribution,  enhancement factors given by : 

These represent enhancement of (3) contribution from host or inclusion, 
relative to the expected value based on a homogeneous E distribution 

)3()3()3()3()3(
hhhinininc gfgf  

2
2

22
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
Vj = volume of inclusion 

or of host (j=in or h)

V = volume of unit cell

NL susceptibility enhancement factor in dense structures
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No size difference:    one main absorption, small multipole peak

Large size difference:  additional resonance feature present   

Nature of resonances follows from field distribution at key frequencies

Effect of cascading on linear absorption
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Cascaded structure:     larger internal enhancement,  new anti-symmetric mode

Question:    how does cascading affect NL enhancement factors

Cascaded field enhancement

s
sa

Non-cascaded Cascaded
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Complex enhancement of (3) now shows two main resonances

Enhancement of antisymmetric mode increases as size difference is increased

Phase of enhancement at peaks : .      New:  phase of between resonances: 0 

Complex enhancement of metal nonlinear response
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Increased damping leads to broadened resonances

At frequencies between modes, this results in an increased absorption

Magnitude of this effect is amplified by cascaded field enhancement

Understanding the complex enhancement factor
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Example: assuming Im(Ag
(3)) = 10-16 m2/V2 calculate  vs. cascading

Result:     dramatically improved response compared to single particle size

Figure of merit for nonlinear absorption
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Outline

1. Introduction:  Nonlinear optical absorption and refraction

Plasmon resonant structures:  approaches

2. Plasmon mediated electric field enhancement on spheres

Cascaded localized plasmons on coupled spheres

3. Nonlinear metamaterials using dissimilar nanospheres

Enhanced nonlinear absorption using cascaded LSPs

4. Fabrication challenges:   spherical vs. shape-optimized

Cascaded field enhancement in 2D compatible antennas

APL 100, 183105 (2012)

PRB 85, 45432 (2012)

APL 101, 13116 (2012)
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Challenge – large area fabrication of cascaded nanoantennas

Thus far:    nanospheres with large volume difference  large field enhancement

Ideal for high power image-preserving optical absorbing layers

- non-scattering    (many closely spaced identical elements)

- spherical elements   (surface melting  limited reshaping)

- large field enhancement factors, NLO response

Challenge:   Not compatible with 2D fabrication?

Appears to be intrinsic problem:   cascading requires 

- Difference in volume to reduce ‘hindering’   (back action)

- Identical resonance frequency needed for coupling

 Can only use particles with identical aspect ratio, making this 2D incompatible?
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Approach:  shape optimization

Challenge:     keep thickness fixed,  modify volume without changing LSP

Approach:    ‘in-plane’  shape optimization.      First approach: use ellipsoids

Field enhancement: 

Dipolar resonance when     ߝ௠ ൌ െ	 ௔ܮ/1 		െ 1	 ௛ߝ	 			≡ 			െܴ		ߝ௛		 (sphere:   R = 2)

Shape factor  La for  ellipsoid with axis lengths   a, b, c :

Question:  can we vary the shape while maintaining LSP? 

௜௡ܧ
଴ܧ

		ൌ 		
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Effect of particle shape on resonance condition

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Contours:  log
10

(R)    Resonance  
m
'= - R 

h1.5

II

VI

IV

V

I

Lo
g 10

(c
/a

)

Log
10

(b/a)

III

V IV

II

-0.5

0

0.5

0.75

1.25

E // a 

b
c

Examples
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Sphere:  R = 100.3 = 2
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Note:   isolines present

 Different shape, 
Same LSP

Next:   Consider shapes indicated by colored symbols APL 101, 13116 (2012)
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Field enhancement in shape optimized ellipsoids

Numerical simulation of internal field enhancement in four shape tuned ellipsoids
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APL 101, 13116 (2012)
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Cascaded field enhancement in shape tuned ellipsoid dimers

Combination of largest particle with either of the three smaller shapes
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Success:  significant cascading in shape optimized 2D compatible dimer antennas



2012 SPIE Optics and Photonics, San Diego, CA 17

NanoPhotonics and Near-field Optics Group, CREOL, UCF kik.creol.ucf.edu

Nanophotonics and Near-field Optics Group http://kik.creol.ucf.edu   slide 33

Conclusions

− Ideal cascaded plasmon resonance can produce
field enhancement > 1000  in simple NP dimer

− Relatively large volume ratios needed   (> 100)

− Assembling cascaded dimers into metamaterial
 dramatically enhanced NLO absorption and refraction

− Cascaded structures outperform non-cascaded structures 

− Spherical shapes :  thermally stable

− Nanosphere cascading incompatible with 2D nanofab

− Shape cascading :  in-plane shape optimized resonance

− Better for low power applications (SERS, biosensing)

APL 100, 183105 (2012)

PRB 85, 45432 (2012)

APL 101, 13116 (2012)


