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The dynamics of Er3+ excitation in low-temperature-annealed Si-rich SiO2 are studied. It is
demonstrated that Si-excess-related indirect excitation is fast �transfer time �tr�27 ns� and occurs
into higher lying Er3+ levels as well as directly into the first excited state �4I13/2�. By monitoring the
time-dependent Er3+ emission at 1535 nm, the multilevel nature of the Er3+ sensitization is shown
to result in two types of excitation of the 4I13/2 state: a fast excitation process ��tr�27 ns� directly
into the 4I13/2 level and a slow excitation process due to fast excitation into Er3+ levels above the
4I13/2 level, followed by internal Er3+ relaxation with a time constant �32�2.3 �s. The fast and slow
excitations of the 4I13/2 level account for an approximately equal fraction of the excitation events:
45%–50% and 50%–55%, respectively. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3044480�

The continued technological implementation of Si pho-
tonics requires the development of a cost effective Si-
compatible light source.1–4 The use of Si nanocrystals �NCs�
as sensitizers of Er3+ ions5 and the subsequent demonstration
of Si-sensitized gain at 1.54 �m �Ref. 6� have drawn signifi-
cant attention since this approach could potentially enable
the realization of an on-chip laser under excitation with a
low-cost broadband light source. Despite significant promise
of this approach, the presence of Si NCs was found to result
in a low concentration of optically active erbium ions7,8 and
to introduce significant confined carrier absorption9–11 as
well as scattering.12 Recently it has been shown that broad-
band sensitization of Er3+ can also occur in Si-doped SiO2
annealed at temperatures well below those required for NC
formation.7,8,13 This phenomenon has been attributed to Er3+

excitation by Si-excess-related luminescence centers �LCs�
in the SiO2 matrix.7,8 Such low-temperature-annealed
samples were found to contain a higher density of optically
active Er3+ ions compared to Si-NC-doped samples with
similar total Si and Er concentrations.7,8 In addition, the ab-
sence of Si NCs in low-temperature annealed samples could
minimize scattering as well as confined carrier absorption
typically introduced by Si NCs during optical pumping.9,10

These factors make low-temperature-annealed Er-doped Si-
rich SiO2 an interesting candidate for the realization of am-
plification at 1.54 �m under broadband excitation. The
evaluation of this material as a gain medium requires a de-
tailed understanding of the observed Er3+ excitation process.
The present study discusses the dynamics of the LC-
mediated Er3+ excitation mechanism in low-temperature-
annealed Er-doped Si-rich SiO2.

An Er-doped Si-rich SiO2 film �thickness 110 nm� con-
taining 12 at. % of excess Si and 0.63 at. % of Er was de-
posited by magnetron cosputtering onto a Si wafer. The
sample was annealed for 100 s in N2 at 600 °C and subse-

quently passivated for 30 min in forming gas �N2:H2

=95% :5%� at 500 °C. No Si aggregates could be detected
in transmission electron microscopy measurements on this
sample.7 For optical measurements, the sample was attached
to the cold finger of a closed-loop He cryostat �ARS, DE-202
AET� and held at 15 K at a pressure of 5�10−7 mbar. Pho-
toluminescence �PL� spectra were taken using the 351 nm
line of a Kr-ion laser as the excitation source �0.26 W /cm2�.
PL spectra in the regions of 500–1100 and 950–1750 nm
were recorded using a charge-coupled device array and a Ge
detector respectively, with a spectral resolution of 10 nm.
The PL spectra were corrected for the system spectral re-
sponse and concatenated at �=1025 nm. The time-
dependent PL signal was measured under pulsed excitation
using the 355 nm line of a Nd:YAG �neodymium doped yt-
trium aluminum garnet� laser �Spectra Physics, Quanta Ray
GCR-150-30�. The full width at half maximum pulse length
�t, the pulse energy, the repetition rate, and the 1 /e2 spot
size were 5 ns, 1.9 �J, 30 Hz, and 1.9 mm2, respectively.
PL decay traces at emission wavelengths of 981 and 1535
nm were obtained using a photomultiplier tube. Unless oth-
erwise stated, the PL decay traces were recorded with a time
resolution of 80 ns. The maximum time resolution in the PL
decay measurements was �27 ns, most likely due to pulse
timing jitter. In all measurements, the sample was scanned to
minimize the possibility of light-induced changes to the op-
tical properties of the sample upon exposure to UV light.14

Further details on the experimental procedures can be found
in Refs. 7 and 8.

Figure 1 shows the PL spectrum in the region of 500–
1700 nm. The spectrum shows four emission bands: a broad
emission band peaking around �600 nm corresponding to
the emission from Si-excess-related LCs in the Si-rich SiO2
matrix,15,16 two narrow bands peaking at 981 and 1535 nm
corresponding to the transition from, respectively, the second
�4I11/2� and first �4I13/2� excited states of the Er3+ ions to the
ground state �4I15/2�, and a weak emission peak at 1128 nm,
most likely due to radiative exciton recombination in the Si
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substrate. At this pump power, no Er-related PL signal could
be detected during either continuous wave �cw� excitation or
pulsed excitation from a reference sample containing a simi-
lar concentration of Er �0.49 at. %� but no excess Si. This
demonstrates that the observed Er3+ emission is predomi-
nantly excited indirectly via a Si-excess-related mechanism.
Power-dependent cw and pulsed PL measurements �not
shown� indicated that second order processes such as coop-
erative upconversion and excited state absorption do not sig-
nificantly contribute to the observed 981 nm emission in
these experiments.

Figure 2 shows the PL decay trace detected at 981 nm
under pulsed excitation. The signal shows a sharp initial peak
followed by a much slower multiexponential decay. The de-
cay after the initial peak was fitted with a stretched exponen-
tial function of the form I3�t�= I3�0�exp�−�t /�3��3�, with a
decay time �3=2.38	0.07 �s and dispersion factor �3

=0.79	0.01 �dashed line�. The inset of Fig. 2 shows the
same signal measured with a detection resolution of 5 ns as
well as the laser pulse shape �open circles, �t�27 ns� and
the LC emission at 750 nm �dotted line� scaled to the same
peak value. The LC emission can be seen to have a lifetime
of �27 ns. The initial peak detected at 981 nm exhibits the
same jitter-limited length of 27 ns, and is attributed to back-
ground emission from LCs at 981 nm �see Fig. 1�. At this
same wavelength, scattered laser light was estimated to con-
tribute less than �2% to the total signal.

The absence of a resolvable Er3+ signal rise after the
excitation pulse in Fig. 2 demonstrates that the energy trans-
fer time of the fast excitation process of Er3+ into the second
excited state �tr is shorter than �27 ns. Based on this obser-
vation, possible excitation channels leading to the 981 nm
emission include excitation by LCs directly into the Er3+

4I11/2 level, or excitation into higher lying Er3+ levels fol-
lowed by internal relaxation of the Er3+ ion on a time scale of
�27 ns. The Er3+ energy level diagram in Fig. 2 lists typical
room-temperature nonradiative relaxation times for Er3+ in
glass hosts.17 Taking into account the predominantly mul-
tiphonon nature of the relaxation, the relaxation times at
15 K are expected to be longer than the listed values.18 Of
the shown relaxation paths, only the 4S3/2→ 4F9/2 relaxation
is significantly slower than 27 ns. We therefore conclude that
the most likely excitation paths of the 981 nm emission are
LC-mediated excitation either directly into the 4I11/2 level or
into the 4I9/2 or 4F9/2 levels followed by rapid relaxation to
the 4I11/2 level.

Figure 3 shows the PL decay trace taken at 1535 nm.
The signal shows a fast rise followed by a slow decay. The
inset of Fig. 3 shows the signal in the first 27 �s after exci-
tation. Two different excitation processes can be distin-
guished: fast excitation ��27 ns� resulting in the rise of the
signal up to �80% of its maximum value and slow excita-
tion taking place on the time scale of �2–3 �s. Reference
measurements taken at wavelengths in the range of 1200–
1500 nm �not shown� revealed only the resolution-limited
initial peak but no slow rise and decay. This demonstrates

FIG. 1. �Color online� PL spectrum of low-temperature-annealed Er-doped
Si-rich SiO2 measured at 15 K. Emission from LC and Er3+ ions is indicated
schematically on energy diagrams.

FIG. 2. �Color online� Time-dependent PL intensity at 981 nm under pulsed
excitation �IPL, solid line� with the corresponding fit �I3, dashed line�. The
Er3+ level diagram indicates possible excitation pathways and typical mul-
tiphonon relaxation times. Inset: Er3+ emission at 981 nm �IPL, solid line�,
the LC emission at 750 nm �IPL, dotted line�, and the pump pulse �Ipulse,
open circles� scaled to the same maximum value.

FIG. 3. �Color online� Time-dependent PL intensity at 1535 nm under
pulsed excitation �IPL, solid line� with the corresponding fit �N2

tot, dashed
line�, including the individual time-dependent contributions due to excita-
tion by the fast �N2

fast� and slow �N2
slow� mechanisms. The Er3+ level diagram

indicates possible excitation pathways. The inset shows the same data in the
range of 0–27 �s.
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that all emission at 1535 nm observed after the initial peak is
due to Er3+ emission from the first excited state. The simi-
larity between the decay time of the second excited state
��2.38 �s� and the duration of the slow excitation of the
first excited state ��2–3 �s� suggests that the slow excita-
tion results from internal relaxation of the Er3+ ion from the
4I11/2 to the 4I13/2 level.

Based on the experimental observations, it appears that
the time-dependent emission from the first excited state �and
thus its total population N2

tot�t�� contains the two following
contributions: emission from Er3+ ions excited into the first
excited state via a fast excitation mechanism �N2

fast� and
emission from Er3+ ions excited via a slow excitation mecha-
nism �N2

slow� due to the relaxation of Er3+ ions from the sec-
ond excited state �characterized by the population N3� to the
first excited state. The time-dependent populations are de-
scribed by the following rate equations:

dN3�t�
dt

= −
N3�t�

�3
,

dN2
slow�t�
dt

=
N3�t�
�32

−
N2

slow�t�
�2

,

dN2
fast�t�
dt

= −
N2

fast�t�
�2

, �1�

where �2 is the decay time of the first excited state and �32 is
the relaxation time from the second to the first excited state.
These equations lead to the following time-dependent total
intensity I2

tot of the 4I13/2→ 4I15/2 transition:

I2
tot 
 N2

fast�0�e−�t/�2��2 +
N3�0�

�32��3
−1 − �2

−1�
�e−�t/�2��2 − e−�t/�3��3� ,

�2�

where the dispersion factors �2 and �3 have been added to
account for the multiexponentiality of the decay. Setting both
dispersion factors to 1 reduces Eq. �2� to the analytical solu-
tion of Eq. �1�. Fitting the trace measured at 1535 nm
with Eq. �2� yields the following parameter values:
�2=20.7	1.9 �s, N3�0� / ��32N2

fast�0��= �4.93	0.52�
�105 s−1, �3=2.33	0.05 �s, �2=0.49	0.01, and �3
=0.63	0.02. The corresponding fit to the experimental trace
and the respective time-dependent contributions to the popu-
lation of the first excited state N2

fast and N2
slow are included in

Fig. 3. The decay time �3=2.33 �s found from this fit and
the value �3=2.38 �s found independently in Fig. 2 are
equal within the experimental error. This observation pro-
vides strong support for the attribution of the slow excitation
process to internal 4I11/2→ 4I13/2 relaxation and not to a slow
LC-mediated excitation process. Taking into account that
�3

−1=�31
−1+�32

−1, with �31
−1 the relaxation rate from level 4I11/2 to

the ground state, we find that the relaxation time �32 is longer
than 2.3 �s. Time integration of the functions N2

fast and N2
slow

yields a quantity proportional to the number of Er3+ ions

excited into the first excited state via the two excitation
mechanisms. Performing this integration shows that
�45%–50% of the optically active sensitized Er3+ ions are
excited directly into the 4I13/2 level by LCs, while
�50%–55% are excited into the 4I13/2 after LC-mediated
excitation of the 4I11/2 level followed by internal relaxation
of the Er3+ ions. The presence of a large contribution of
excitation via the 4I11/2 level implies that the interlevel relax-
ation rate �32

−1 will have a significant effect on the maximum
net LC-mediated excitation rate of the 4I13/2 level.

In summary, the mechanism of Er3+ excitation in low-
temperature-annealed Er-doped Si-rich SiO2 was studied.
Er3+ excitation by LC was shown to occur directly into the
4I13/2 level, as well as into higher lying levels, with a typical
time constant of �27 ns. The presence of such a multilevel
sensitization results in two types of excitation of the 4I13/2
level of Er3+: fast direct excitation ��tr�27 ns� by the LCs
and slow excitation due to the fast excitation of Er3+ ions
into the higher energy levels with subsequent relaxation to
the first excited state with a time constant �32�2.3 �s. It is
shown that an approximately equal percentage of Er3+ ions
are excited into the 4I13/2 level by the fast �45%–50%� and
slow �50%–55%� processes.
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