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ABSTRACT  

Plasmon resonant metal nanoparticles on substrates have been considered for use in several nanophotonic applications 
due to the combination of large field enhancement factors, broadband frequency control, ease of fabrication, and 
structural robustness that they provide. Despite the existence of a large body of work on the dependence of the 
nanoparticle plasmon resonance on composition and particle-substrate separation, little is known about the role of 
substrate roughness in these systems. This is in fact an important aspect, since particle-substrate gap sizes for which large 
resonance shifts are observed are of the same order of typical surface roughness of deposited films. In the present study, 
the plasmon resonance response of 80 nm diameter gold nanoparticles on a thermally evaporated gold film are 
numerically calculated based on the measured surface morphology of the gold film. By combining the measured surface 
data with electromagnetic simulations, it is demonstrated that the plasmon resonance wavelength of single gold 
nanoparticles is blueshifted on a rough gold surface compared the response on a flat gold film. The anticipated degree of 
spectral variation of gold nanoparticles on the rough surface is also presented. This study demonstrates that nanoscale 
surface roughness can become an important source of spectral variation for substrate tuned resonances that use small gap 
sizes.  
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1. INTRODUCTION  
Understanding the plasmonic response of metal nanostructures is an important step toward engineering plasmonic 
structures with optimized resonance properties. Several frequency controlled plasmon resonance structures utilize 
electromagnetic coupling between closely spaced nanostructures to shift plasmon resonances. The preparation of such 
structures generally involves costly and time consuming fabrication techniques such as electron beam lithography. 
Substrate-based tuning of nanoparticle plasmon resonances on the other hand makes use of the coupling between a 
nanoparticle and induced polarization in the substrate.1,2 Since the resonance response depends on substrate composition 
or deposited layer thickness only, the need for precise alignment between nanostructures is eliminated. The plasmon 
resonance of substrate-controlled or ‘film-coupled’ nanoparticles can be adjusted simply by depositing particles on 
different substrates. Several studies have reported a large resonance tuning range and strong predicted electric field 
confinement of film-coupled nanoparticles.3–6 For small particle-substrate separations, the typically dipolar plasmon 
resonance of spherical particles is perturbed by the substrate, resulting in hybridized gap plasmon modes with multipolar 
character and a maximum field amplitude near the contact point with the substrate.7–9 Film-coupled plasmon resonant 
structures can be prepared using chemically synthesized metal nanoparticles and a thin metal or dielectric layers prepared 
using standard deposition techniques. Therefore, making film-coupled plasmon resonance structures is simpler, less 
costly, and less time consuming than lithography-based nanostructure fabrications. This relative simplicity also enables 
reproducible resonance control as well as advantages in structural and thermal stability of the structure.6 

Based on the simplicity of the fabrication of film-coupled plasmon resonant systems, it could be expected that particle 
size and shape variations would be the main contributing factors to variations in metal nanoparticle resonance spectra. 
However, due to the high mode confinement of gap plasmons in film-coupled nanoparticle systems nanoscale surface 
roughness could also play an important role. While gap plasmon resonances have been investigated in numerous studies, 
a thorough investigation of the effect of surface roughness on the spectral variation of gap plasmon resonances is 
lacking. In this study, we present a numerical approach to identify how roughness influences nanoparticle resonances, 
and to predict the magnitude of this effect in realistic experimental systems. In particular, we study the effect of surface 
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2.2 Numerical characterization 

In order to predict the scattering resonance spectrum of single gold nanoparticles on a rough substrate, the exact local 
environment of each particle must be known, however this is not possible to determine with most analysis techniques. 
For example, AFM and scanning electron microscopy only reveal the substrate around the particle, but not under it. 
Cross-sectional transmission electron microscopy of a sample section requires destruction of the sample and usually only 
offers one view (single side view) of the immediate particle environment. Since the exact three-dimensional local 
environment is not easily obtained and varies from particle to particle, here we extract likely local environments based 
on the measured surface morphology. Deposition of gold nanoparticles for the preparation of surface-tuned plasmon 
resonance structures commonly involves drop coating a colloidal solution of gold nanoparticles, followed by drying in 
flowing air or flowing nitrogen. In the present study it is assumed that the particles settle in local height minima on the 
gold, driven by capillary forces during the sample drying process. The possible local minima are not simply the local 
minima seen in the raw AFM data but rather the local height minima that can be accessed by the finite-size gold 
nanoparticles.  

To find possible local height minima, an algorithm was developed that converts measured AFM data to a virtual surface 
representing all z-positions that can be occupied by an 80 nm diameter nanoparticle. The algorithm places the particle at 
each x,y coordinate, and lowers the 80 nm diameter particle until it comes into contact with any part of the scanned 
surface. As such the algorithm mimics an AFM scan of the surface if the surface was mapped with an AFM tip with a 
40 nm tip radius. Figure 1(b) shows the processed 3D surface corresponding to the AFM data in Fig. 1(a). The over 1200 
local minima in this graph represent likely final locations of the Au nanospheres. Figure 1(c) shows a 2D sketch of a 
local particle height minimum obtained by this method.  

Figure 1(d) shows AFM data of a 100 nm × 100 nm section of the gold surface at a randomly picked local minimum out 
of the 1200 local minima found, with a rendering of an 80 nm diameter nanoparticle superimposed at the local minimum. 
It can be seen that the particle deposited at this local minimum is supported by three contact points as the result of the 
surface roughness. This is by far the most likely configuration (~90 % of all minima), with the other likely configuration 
being a nanoparticle with a single contact point (10% of minima) Even knowledge of the possible locations, the presence 
of one or three contact points, and the particle substrate separation at these minima does not paint a complete picture. In 
order to predict typical resonance spectra of particles in these local minima, the typical position of the three contact 
points must be estimated. To find this information, the surface roughness was spectrally analyzed. In particular, the 
periodicity of the protrusions on the surface was determined to be 25 nm by determining the most prevalent spatial 
wavevector present in the rough surface. This was done by carrying out a two dimensional Fourier transform of the AFM 
image in Fig. 1(a) and angularly integrating the two-dimensional Fourier amplitude at each wavevector magnitude to 
find the total population of a specific wavevector presents on the surface. Figure 1(e) presents the resulting normalized 
plot of the wavevector population as a function of the wavevector magnitude. The predominant period was used as 
typical separation between the protrusions making up the contact points. The local environment is thus assumed to be 
made up of three spherical protrusions with a 25 nm lateral separation. These protrusions can create a gap separating the 
deposited nanoparticle from the gold surface, see the schematic in Fig. 1(c). Variations in these local gaps could 
introduce spectral variations in the plasmon resonances of single gold nanoparticles on rough substrates. For this reason, 
expected separations were extracted from the particle height map in Fig. 1(b). Figure 1(f) shows the thus obtained 
histogram of possible gaps between the particle and the substrate at the local minima in Fig. 1(b). Since only 10% of the 
local minima has zero particle-substrate separation, the optical response will be dominated by particles supported by 
three contact points with a resonance affected by the gap size. The histogram in Fig. 1(f) shows that the gap sizes range 
from a few angstroms to as much as 2 nm, which is anticipated to result in significant particle-to-particle variation of the 
plasmon resonance response. 
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