Plasmon Printing

Using metal nanoparticle arrays for near field optical lithography

Pieter Kik, Andrea L. Martin, Stefan Maier and Harry Atwater
California Institute of Technology

Financial Support: Center for Science and Engineering of Materials (CSEM) at Caltech, National Science Foundation
Projection lithography and the diffraction limit

Projection lithography

smallest feature size \(\sim \lambda \)

Plasmon printing

smallest feature size \(\sim 0.1 \lambda \)

(Adapted from J. T. Weed and L. Karklin, Canon USA)
The surface plasmon resonance

Absorption and scattering of light by small particles, Bohren & Huffman

low frequency

high frequency

resonance: electron phase lag 90° \(\Rightarrow \) field enhancement
Resonance in Ag nanoparticles

Ag (⌀ 41 nm) in solution

Resonance at $\varepsilon_{Ag} = -2 \varepsilon_{H2O}$

$\lambda_{res} = 410$ nm

$\tau_{relax} \approx 2$ fs

AZ photoresist (g-line)

Resonance wavelength: N_e, n_{matrix}, shape, size

Resonance strength: τ_e (“internal” + surface scattering)

Ag: Strong resonance within sensitivity of standard g-line photoresist

Kik, Martin, Maier, Atwater – SPIE Seattle 2002
Printing scheme

- **MASK**
- **PHOTORESIST**
- **SUBSTRATE**

EXPOSE
- 410 nm

DEVELOP

- high resolution mask ($$$)
- standard resist
- simple light source
- parallel, sub-wavelength

Mask fabricated with JPL, Pasadena, CA

Kik, Martin, Maier, Atwater – SPIE Seattle 2002
3D Finite Difference Time Domain calculations

- Enhanced energy density directly below particle
- Phase lag 90° ⇒ resonant excitation

Ag: Drude model

\[\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2 - i\omega\gamma} \]

with \(\gamma = \tau_e^{-1} \)

- Wavelength: 439 nm
- Simulate: 20 cycles
- Time step: 750 / cycle
Time averaged energy density

- enhanced exposure in photoresist layer
- interference fringes due to scattering
- phase lag \Rightarrow spot anisotropy
- inclined illumination improves spot shape

Kik, Martin, Maier, Atwater – SPIE Seattle 2002
- smallest features $\lambda/15$ (limited by simulation)
- trade-off: smaller width at the cost of lower depth
- maximum size determined by field enhancement
Particle-particle interactions

Closely spaced particles: collective modes and shifted resonances

Can be compensated by particle shape (e.g. 1:3 aspect ⇒ 70 nm shift)
Initial experiments

Nanoparticles
colloidal Ag (\(\phi 41\) nm) in aqueous solution
deposit on resist (nebulize)

Resist
AZ1813 resist, diluted to 1:4 with EBR
spin 5000 rpm 60s \(\Rightarrow\) 75 nm thick layer
developing tested OK

Substrate
glass slide, roughness 5Å RMS

1. Expose
broad beam, Xe arc lamp at 410 nm
intensity ~1 mW/cm\(^2\) (TM)
exposure 15 / 30 / 45 / 60 s

2. Develop
diluted 1:1 – dev. time ~20 s

3. Analyze
Use AFM to image printed features
Illumination setup

- Xe lamp 1000 W
- monochromator
- Si diode
- polarizer
- cyl. lens
- sample stage
- coll. lens

Sample holder
Beam shape
Contact mode AFM

sample: Ag 40 nm AZ resist 75 nm exp. 15s (410 nm) dev. 20s

see - remaining Ag particles (swept by AFM tip) and
- sub-wavelength size dips width 30-60 nm, depth 10-15 nm
Conclusion and outlook

Plasmon printing may be used to print high resolution patterns using standard photoresist and broad-beam illumination with visible light

Future work
- investigate effects of particle shape and areal density
- replicate complex e-beam defined masks