
 

 
 
 
 
 
 

OSE5312 – Light-Matter Interaction 
 

David J. Hagan and Pieter G. Kik 
 

 
 
 
This document represents the course notes for CREOL course OSE5312. The text is a work 
in progress, so if you have any comments, please let us know! 
 
David Hagan:   http://www.creol.ucf.edu/People/Details.aspx?PeopleID=300 
Pieter Kik:  http://www.creol.ucf.edu/People/Details.aspx?PeopleID=3407  
   

 
 
 
 
 
 

 
 

CREOL, The College of Optics and Photonics 
University of Central Florida 
 4000 Central Florida Blvd. 
  Orlando, FL 32816-2700 

 
 
 
 
 
 
 
 
 
 
 

Date generated: January 10, 2019 



 2

Table of Contents 

Chapter 1 - Introduction 7 

Phenomenological description of the refractive index 7 

Chapter 2  - Light propagation in lossless media 11 

Wave propagation in vacuum 11 
Field-induced polarization in materials 13 
Wave propagation in a lossless medium 15 

Chapter 3  - Light propagation in dispersive media 19 

Time-dependent susceptibility – the impulse response 19 
Real electric fields as a sum of complex exponents 20 
Frequency dependent susceptibility 21 
Wave propagation in a material with complex susceptibility 23 
Absorption coefficient 25 

Chapter 4 – Kramers-Kronig relations 27 

Kramers-Kronig relations for susceptibility 27 
Relation between ( and X’’) and (n and X’) for weak susceptibility 29 
The dispersion of refractive index around a resonance 29 
Derivation of Kramers-Kronig relations by Cauchy’s integral theorem 31 
Kramers-Kronig relations for Reflected Amplitude and Phase 33 

Chapter 5 – Lorentz model of the optical properties of dielectrics 35 

Classical Lorentz oscillator model for absorption & dispersion 35 
Resonance Approximation 40 
Real Atoms & TRK Sum Rule 40 
Applicability of the Lorentz model to real materials 44 
The absorption cross-section 46 

Chapter 6 - Drude model of the optical properties of metals 47 

The dielectric function of the ideal free electron gas 47 
Optical absorption in low electron density materials – Semiconductors 48 
Significance of the plasma frequency 49 
Modifications of Drude theory in real metals 51 
Examples:  silver, copper, and indium-tin-oxide (ITO) 52 
Drude conductivity and skin depth 55 



 3

Chapter 7 – Optical Activity and Magneto-Optics 59 

Optical Activity 59 
Zeeman Splitting 66 
Faraday Rotation 69 

Chapter 8 – Nonlinear Optical materials 71 

Anharmonic oscillator model 71 
Non-centrosymmetric materials – SHG and optical rectification 72 
Non-centrosymmetric materials – SFG and DFG 76 
Centrosymmetric materials – THG and nonlinear refraction 78 

Chapter 9 – Quantum mechanics 81 

The early days 81 
The wavefunction 82 
Electron momentum and kinetic energy 82 
The Time-independent Schrödinger Equation 85 
Energy Eigenfunctions in important binding potentials 86 
The Time-Dependent Schrödinger Equation 97 

Chapter 10 – Homogeneous and inhomogeneous broadening 101 

Inhomogeneous broadening due to variations in local environment 101 
Doppler broadening 101 

Chapter 11 – Interaction of light with molecular vibration and rotation 105 

Molecular bonds 105 
Normal modes 106 
Dipole active modes 109 
Classical description of vibrations in molecules and solids 111 
Quantum description of light interaction with rotation and vibration 113 
Coupled electron/vibration transitions in molecules 118 
Raman active modes 119 

Chapter 12 – Debye model of the optical properties of polar liquids 123 

Hindered rotational modes 123 
Molecular alignment in polar liquids 124 
Optical response in Debye description 127 

Chapter 13 – Interaction of light with vibrations in solids 131 

Vibrational modes in a monatomic 1D lattice 131 



 4

Vibrational modes in a diatomic 1D Lattice 134 
Interaction of radiation with lattice modes 136 
Optical properties of polar solids 138 
The Lyddane-Sachs-Teller relationship 139 
Coupled Photon-Phonon modes: Phonon-polaritons 142 

Chapter 14 – Optical properties of semiconductors 149 

Electronic Band Structure 149 
Interband absorption 155 
Density of States and Fermi Golden Rule 156 
Exciton absorption 162 
Impurity absorption 163 
Free carrier absorption 164 
Semiconductors of reduced dimension 166 

Chapter 15 – From dipole radiation to refractive index 169 

Mathematical description of dipole radiation 169 
Effect of re-radiated field from induced dipoles 172 
Scattered Power 173 
Absorbed Power 174 
Complex refractive index for a sheet of induced dipoles 176 

Appendix A – Vector relations and theorems 179 

Appendix B – Maxwell’s Equations 183 

Appendix C – Empirical descriptions of refractive index 185 

Sellmeier equations 185 
Schott glass description (power series) 187 
Hertzberger description (mixed power series and Sellmeier) 188 
Abbe number 188 



 5

Appendix D – Fourier transforms 189 

Appendix E – Optical response: formulas and definitions 191 

Appendix F – Springs, Masses, and Resonances 193 

Appendix G – Rules of thumb and orders of magnitude 195 

Appendix H – Approximations 197 

Dilute medium approximation 197 
Weak absorption approximation 197 
Effect of dopants on reflection for weak absorption 198 

Appendix I – Thermal distribution functions 199 

Boltzmann probability distribution 199 
Maxwell-Boltzmann velocity distribution 199 
Bose-Einstein probability distribution 199 
Fermi-Dirac probability distribution 200 

Appendix J – Wavefunctions of the Hydrogen atom 201 

Appendix K – OSE5312 Quantum Mechanics topics 203 

Appendix L – Recognizing material types 209 

Dilute gases 209 
Polar liquids 209 
Insulators 209 
Semiconductors 209 
Metals 210 

Appendix M – Fundamental physical constants 211 

Index 213 

 



 6

  



 7

Chapter 1 - Introduction 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
The propagation of light traveling through materials is affected by the motion of electric 
charges, for example by the movement of bound electrons of the atoms in the material. We 
will derive physical models do describe the charge motion and the resulting optical 
properties in later Chapters. In this introductory Chapter we first develop an intuitive 
picture of the interaction of light with charge, and make a prediction of the wavelength 
dependent refractive index. A more detailed description of these arguments is given in 
Wooten, Chapter 2. 

Phenomenological description of the refractive index 

 

 
Figure 1.1 

Light is usually encountered as a propagating transverse electromagnetic wave, meaning 
that the electric and magnetic fields oscillate in space and time, and that the direction of 
these fields is normal to the propagation direction. When a light wave encounters a charged 
particle (electron, positive ion, negative ion, positron, ..) the electric field exerts an electric 
force Fe=qE where q is the charge of the particle, and E is the field strength.i The time 
dependent electric field accelerates the charge, and accelerating charge causes radiation. 
This is light-matter interaction in a nutshell: optical radiation accelerates charges in a 
material, and accelerating charges emit light that adds to (or subtracts from) the incident 
light.  
 
To understand how accelerating charge gives rise to radiation, let’s consider the electric 
field lines around a positive charge that is initially at rest, and that suddenly undergoes 
positive acceleration. The charge is initially surrounded by a purely radial electric field of 
strength 𝐸 = (𝑟̂/𝑟ଶ)/4𝜋𝜖଴ corresponding to straight field lines extending to infinity, as 
sketched above. Immediately after a brief acceleration field lines near the charge still point 
radially outward. However, at larger distances, the information about the new charge 
position is not yet known due to the finite speed of light. In order to connect these different 
field distributions, at an intermediate position the field lines need to have a transverse 
                                                 
i We will discuss units later. Note that we also ignore the Lorentz force 𝐹⃗௟ = 𝑞 𝑣⃗ × 𝐵ሬ⃗ . 
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component that is pointing downward. These transverse components move away from the 
charge at a velocity c, and represent the radiation pattern around accelerating charge. Note 
that no transverse components exist in the direction along the charge acceleration 
direction.ii  

When light propagates inside gases, liquids or solids, electrons (negative charge) 
and atom cores (positive charge) are accelerated continuously. This results in an oscillating 
charge position, corresponding to an oscillatory dipole moment. The periodic charge 
acceleration produces radiation at a frequency that matches that of the incident light.iii This 
reradiated light adds to the incident light wave, which is now slightly modified. Thus, 
refractive index can be seen as the result of the re-radiation of light from a large collection 
of oscillating dipoles.  
 

 
 

Figure 1.2  Development of dipole radiation, showing only electric field components 

To understand the origin of the refractive index, and why it is usually larger than 1, we 
need to consider the phase of the charge oscillation. Let’s first look at the response of a 
charge to an incident oscillating field. For a positive bound charge that is driven well below 
resonance, we find that the position of the charge is exactly in phase with the driving field, 
see graph below. The velocity can be seen to be 90 ahead in phase, and the acceleration is 
yet another 90 ahead. In the discussion above, we found that the field resulting from this 
acceleration is pointing in the direction opposite to the acceleration. Surprisingly, this 
analysis shows that the reradiated field at low frequencies is exactly in phase with the 
incident wave. This would correspond to a refractive index which is always exactly equal 
to 1, which we know is incorrect.  
 

           
Figure 1.3 Charge motion under oscillatory driving field 

                                                 
ii From this analysis it also follows that static charges and charges with constant velocity do not radiate. 
iii Except for very strong fields. In that case we would need to consider nonlinear optics, discussed in a later 
Chapter.  



 9

The error in the analysis lies in the fact that we considered only a single isolated charge. In 
reality, we need to consider the effect of many radiating dipoles, as shown below. The 
incident plane wave will drive a sheet of dipoles, all radiating in phase with the incident 
light. At a finite distance from these dipoles, the total field observed contains radiation 
contributions from many dipoles. On some optical axis of choice, radiation coming from 
off-axis dipoles will arrive a little later, causing a phase delay, or reduced apparent velocity 
of the light. By carefully integrating the effect of all dipoles, it follows that the total phase 
delay adds up to exactly 90 compared to the ‘direct’ wave. As a result, the low frequency 
refractive index is larger than 1, with the magnitude given by the number of dipoles 
contributing and their individual dipole moments.  
 

 
Figure 1.4 Excitation of a sheet of dipoles, and resultant field on optical axis 

To understand the frequency dependence of the refractive index, we need to add the 
frequency dependent response of a Lorentz oscillator to this picture. We know that at low 
frequencies we obtain a finite dipole moment and zero phase delay, while near resonance 
the phase delay approaches 90 and the amplitude reaches a maximum. At high frequencies 
the phase difference approaches 180 and the amplitude approaches zero. The resulting 
changes of the refractive index are sketched below:  
 

 
Figure 15.5 Field from sheet of dipoles excited at different frequencies 
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At low frequencies (top graph), the Lorentz oscillator responds in-phase with the incident 
light, but due to the collective ‘dipole sheet’ effect described above, the net phase delay is 
0(oscillator) + 90(sheet effect) = 90. By adding this finite phase-delayed response to the 
incident field, the light appears to propagate slightly slower, corresponding to a finite 
refractive index n>1. As the frequency increases, the oscillation amplitude goes up, as does 
the phase delay. Both effects together add up to a larger delay, and a higher refractive 
index. Exactly at the resonance frequency, the oscillation amplitude reaches a maximum. 
However, at this frequency the Lorentz oscillator responds with a phase delay of 90, 
resulting in a total phase delay of 90(oscillator)+90(sheet effect)=180. The dipoles can 
be seen to generate radiation that destructively interferes with the incident light, resulting 
in a change of the amplitude, but no change in the phase, corresponding to a real part of 
the refractive index close to 1, and finite absorption. At frequencies above the resonance, 
the phase delay exceeds 180, which can be seen as a phase lead. The light appears to be 
accelerated, corresponding to a refractive index less than 1. The resulting refractive index 
curve is shown on the right side of the Figure. As we will see in later chapters, a more 
thorough model description of the polarization of atoms in a material leads to similar 
refractive index spectra.  
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Chapter 2  - Light propagation in lossless media 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
In Chapter 1 we saw that the refractive index of materials can be understood as the result 
of dipole radiation from charges accelerated by the electric field. In this chapter we will 
take a different viewpoint. Instead of considering separate contributions from individual 
atomic dipoles, we assume that materials can be described as having a smoothly distributed 
polarization. We will call this the ‘continuum’ description. The effect of such a continuous 
medium on wave propagation is described by Maxwell’s equations. In this Chapter we 
discuss light propagation through a material in which all charges respond instantly to 
applied fields, corresponding to a perfectly transparent (lossless) medium.  

Wave propagation in vacuum 

As mentioned in Chapter 1, light is an electromagnetic wave containing an oscillatory 
electric field and an oscillatory magnetic field. To fully describe a light wave we therefore 
need to know the magnitude and direction of E and B at every point in space. The 
corresponding field distributions are time dependent vector fields, written as 𝐸ሬ⃗ (𝑟, 𝑡) and 
𝐵ሬ⃗ (𝑟, 𝑡).  
 
Maxwell’s equations describe the classical relations between charge (units Coulomb, C), 
current (C/s), electric field (V/m), and magnetic flux density B (Wb/m2 or Tesla=104 
Gauss). The complete Maxwell equations include terms related to free charge, see 
Appendix B, however here we focus on light propagating either in vacuum or in 
homogeneous media without localized free charge concentrations, which simplifies the 
equations.  
 
Before we discuss light-matter interaction, let’s first discuss light propagation in the 
absence of any matter. In vacuum (no material, no free charges), Maxwell’s Equations are  
 

𝛻 ⋅ 𝐸ሬ⃗ = 0 (2.1) 

𝛻 ⋅ 𝐵ሬ⃗ = 0 (2.2) 

𝛻 × 𝐸ሬ⃗ = −
𝜕𝐵ሬ⃗

𝜕𝑡
 (2.3) 

𝛻 × 𝐵ሬ⃗ = 𝜖଴𝜇଴

𝜕𝐸ሬ⃗

𝜕𝑡
 (2.4) 

 
Here 𝜖଴ is the vacuum permittivity and 𝜇଴ is the vacuum permeability. These equations 
allow for electric and magnetic field solutions that oscillate in space and time, and that 
propagate together. Instead of trying to solve for B and E at once, we first use these 
equations to derive an expression that puts requirements on E  and that does not explicitly 
depend on B.  Taking the curl of Eq. 2.3 and the negative time derivative of Eq. 2.4, we 
find  
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∇ × 𝛻 × 𝐸ሬ⃗ = −
𝜕

𝑑𝑡
൫∇ × 𝐵ሬ⃗ ൯ (2.5) 

−
𝜕

𝜕𝑡
൫𝛻 × 𝐵ሬ⃗ ൯ = −𝜖଴𝜇଴

𝜕ଶ𝐸ሬ⃗

𝜕𝑡ଶ
 (2.6) 

Comparing these two relations we see that the following relation must be satisfied: 

∇ × 𝛻 × 𝐸ሬ⃗ = −𝜖଴𝜇଴

𝜕ଶ𝐸ሬ⃗

𝜕𝑡ଶ
 (2.7) 

Using the general vector relation  ∇ × ൫∇ × 𝐹⃗൯ =  −∇ଶ𝐹⃗ + ∇൫∇ ⋅ 𝐹⃗൯ we have 

−∇ଶ𝐸ሬ⃗ + ∇൫∇ ⋅ 𝐸ሬ⃗ ൯ = −𝜖଴𝜇଴

𝜕ଶ𝐸ሬ⃗

𝜕𝑡ଶ
 (2.8) 

Since we are in vacuum, the field is divergence-free (no net charge present). We thus have 
found an equation linking a double spatial derivative (i.e. the curvature) of E to a double 
time derivative of E: 

∇ଶ𝐸ሬ⃗ = 𝜖଴𝜇଴

𝜕ଶ

𝜕𝑡ଶ
𝐸ሬ⃗  (2.9) 

This is the wave equation in vacuum, which allows many different wave-like solutions, 
including spherical waves, cylindrical waves, and complicated  phenomena like curved 
Airy beams and non-diffracting beams. It also allows a wide variety of time dependencies, 
including ‘single-frequency’ (narrowband) laser light, regular sequences of short pulses 
with evenly spaced frequency contributions (a ‘frequency comb’), or a Gaussian 
distribution of frequency components producing a single short pulse. This text doesn’t 
focus on such exotic cases. Instead, to understand light matter interaction we can focus on 
the simplest possible time-dependent solution to the wave equation: the plane wave, 
described by  

𝐸ሬ⃗ (𝑡, 𝑟) = 𝐸ሬ⃗ ௥ cos൫𝑘ሬ⃗ ⋅ 𝑟 − 𝜔𝑡 + 𝜙൯. (2.10) 

Here 𝐸ሬ⃗ ௥ = (𝐸௥௫ , 𝐸௥௬ , 𝐸௥௭) is a fixed field amplitude vector of the wave in units V/m,  is 

the angular frequency in rad/s, 𝑘ሬ⃗  is the wavevector, 𝑟 is the position, and 𝜙 is a possible 
fixed phase offset. The angular frequency 𝜔(𝑟𝑎𝑑/𝑠) is simply given by 𝜔 = 2𝜋𝑓 and is 
written as having units rad/s, to indicate a phase that varies by 𝜔 radians per second. The 
radian is not a physical unit so in principle it could be omitted, but the convention is to 
include it when dealing with angular frequency. The wavevector k describes spatial 
variation of the field, with a magnitude given by k=2/ with  the wavelength. The 
wavevector describes ‘phase variation per distance’ in radians per meter, but it is typically 
written as having units m-1. The direction of the wavevector corresponds to the propagation 
direction of the wave.  
 
Maxwell’s equations put requirements on the allowed orientations of 𝐵ሬ⃗  and 𝐸ሬ⃗  relative to 𝑘ሬ⃗  
and to each other, but in deriving the wave equation for 𝐸ሬ⃗  in vacuum we lost any 
requirements on the direction of the field vector (or its magnitude for that matter). Note 
that Eq. 2.9 represents three identical scalar wave equations for Erx, Ery, and Erz. Apparently 
our field components each must satisfy the scalar wave equation: 
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∇ଶ𝐸 = 𝜖଴𝜇଴

𝜕ଶ

𝜕𝑡ଶ
𝐸 (2.11) 

Since vacuum is isotropic, light propagation occurs exactly the same way for any choice 
of propagation direction. To find requirements on the relation between angular frequency 
and wavevector, we can thus use a scalar trial function of the form   

𝐸(𝑡, 𝑧) = 𝐸௥ cos(𝑘𝑧 − 𝜔𝑡) (2.12) 

where we have chosen direction along the z axis, and set the phase offset to zero for 
simplicity of notation. Substituting this trial function into the scalar wave equation, and 
taking the temporal and spatial derivatives we find  

−𝜔ଶ𝐸௥ cos(𝑘𝑧 − 𝜔𝑡) = −𝑘ଶ𝜖଴𝜇଴𝐸௥ cos(𝑘𝑧 − 𝜔𝑡)  ⇒  
𝜔

𝑘
= ඨ

1

𝜖଴𝜇଴
≡ 𝑐 (2.13) 

It can easily be shown that the quantity 𝜔/𝑘 is the speed at which phase fronts move 
through space, known as the phase velocity vp. Apparently Maxwell’s Equations demand 
that light moves through vacuum at a fixed velocity, independent of the frequency. This 
speed is known as ‘light speed’, denoted by c.  
 
The wavelength of light in vacuum 𝜆଴ follows simply from  

𝜔

𝑘
=

𝜔

2𝜋/𝜆଴
= 𝑐   ⇒    𝜆଴ =

2𝜋𝑐

𝜔
 (2.14) 

Note that we haven’t proven that our trial wave is a solution to Maxwell’s Equations. We 
have only proven that our trial wave with phase velocity c satisfies our scalar wave equation 
for the electric field. To satisfy Maxwell’s equations, we still need to find a combination 
of 𝐸ሬ⃗ , 𝐵ሬ⃗  and 𝑘ሬ⃗  that satisfies relations 2.3 and 2.4. Substituting a vectorial trial wave for E 
and B with the same phase velocity and a shared wavevector 𝑘ሬ⃗  it can be shown that E and 
B are normal to each other with a relative magnitude c, and that both are normal to the 
direction of the wavevector. This is known as a transverse electromagnetic wave.  

Field-induced polarization in materials  

In vacuum, light of any frequency propagates along 𝑘ሬ⃗  at a constant speed c. Inside materials 
however, light propagation is modified by the interaction between the electromagnetic 
fields and charges. Materials are composed of atoms that contain positive and negative 
charge in the form of protons in the atom core and electrons surrounding the core. In metals 
the outermost electrons, known as valence electrons, are free to move, while in non-metals 
(‘dielectrics’), the valence electrons are bound to the atoms. These charged particles 
experience forces when electromagnetic fields are present, causing them to move in 
response to the fields. Consequently light propagation inside materials becomes a 
combined phenomenon of charge motion and field oscillation, changing – among other 
things – the speed at which light moves through the material.  
 
A large part of light-matter interaction can be understood in terms of a property known as 
polarization 𝑃ሬ⃗ (C/m2), representing the dipole moment per unit volume. Polarization inside 
a material develops due to forces on the electrons and the atom cores in the presence of an 
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electromagnetic wave. An electric field E tends to move the positive atom core in one 
direction and the electrons in the opposite direction. The atom core is several orders of 
magnitude heavier than the electron and therefore moves much less than the electrons, so 
the movement of the core is usually ignored. The small displacement r of the electrons 
relative to the atom core corresponds to a dipole moment 

𝜇(𝑡) = 𝑞௘𝑟 = −𝑒𝑟 (2.15) 

with qe=-e the charge of the electron. If the material contains N(m-3) of such electrons per 
unit volume that all respond in the same way, the dipole moment per unit volume simply 
becomes 

𝑃ሬ⃗ = −𝑒𝑁𝑟 (2.16) 

The electron displacement is typically less than a millionth of the atomic diameter, 
depending on the field strength, but as we will see in Chapters 5 and 6, the combined effect 
of the many electrons in typical solids still has a significant effect on light propagation. 
 
In principle the polarization response of materials to an applied field can be complicated. 
For example, while the electrons move in response to the field, the polarization can have a 
different time dependence than the electric field, or even a different direction than the 
applied electric field. This makes it challenging to find solutions to Maxwell’s Equations 
inside materials. However many materials are isotropic, in which case the electrons move 
along the field direction, and thus polarization points along the same axis as the electric 
field. Moreover, electrons are very light and consequently they can accelerate rapidly 
(recall F=ma), i.e. they respond very quickly to the field. In the simplest possible model 
we might expect that the dipole moment related to the movement of bound electrons is 
linearly dependent on the applied field strength, according the following relation:  

𝑃ሬ⃗ (𝑡) = 𝜖଴𝜒ఋ𝐸ሬ⃗ (𝑡) (2.17) 

where  is a unitless scaling factor. This is not a general relation. It is an approximate 
relation that assumes that the electron response is instantaneous, meaning that the dipole 
moment appears immediately when a field is applied, and linear, meaning that doubling 
the electric field doubles the magnitude of the dipole moment. Nevertheless, these 
assumptions are helpful in beginning to understand the effect of polarization on light 
propagation.iv  
 
The unitless quantity  is known as the electric susceptibility, where the subscript  
indicates that its use in this time dependent relation is appropriate for instantaneous 
response only. We will derive a more general expression for   in the next chapter. The 
vectorial notation with a scalar (non-tensorial)  is only allowed in isotropic media. Despite 
all these assumptions and approximations, this relation actually represents quite a 
reasonable description of the response of transparent media excited at frequencies well 
below any absorption band. Next, we will discuss the effect of instantaneous polarization 
on wave propagation.  

                                                 
iv We will discuss what happens when we go beyond these approximations in Chapters 3 and 8. 
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Wave propagation in a lossless medium  

Previously we found that Maxwell’s equations in vacuum allow for transverse 
electromagnetic waves propagating with a phase velocity c. In the presence of matter (free 
electrons, atoms containing protons and electrons), two things change about Maxwell’s 
equations. First, the divergence of the field may become nonzero:  

𝛻 ⋅ 𝐸ሬ⃗ =
𝜌

𝜖଴
 (2.18) 

Here (C/m3) is the total charge density. Inside homogeneous isotropic neutral (uncharged) 
materials the charge density remains zero, even when excited with light, so we will 
continue to use ∇ ⋅ 𝐸ሬ⃗ = 0. Nevertheless, it’s important to realize that this is not generally 
true. Second, the relation describing the curl of the magnetic field changes as follows: 

𝛻 × 𝐵ሬ⃗ = 𝜖଴𝜇଴

𝜕𝐸ሬ⃗

𝜕𝑡
+ 𝜇଴ ቈ𝐽௙ +  𝛻 × 𝑀ሬሬ⃗ +

𝜕𝑃ሬ⃗

𝜕𝑡
቉ (2.19) 

The newly introduced terms between the square brackets are ‘matter’ related terms: free 
electric current density Jf, magnetization current density 𝛻 × 𝑀ሬሬ⃗  , and polarization current 
density 𝜕𝑃ሬ⃗ /𝜕𝑡. This equation directly shows how electromagnetic waves inside materials 
are different from those in vacuum. The added terms thus represent ‘light matter 
interaction’. In this text, we discuss the polarization current density caused by light-
induced charge motionv, which we will model in Chapters 5 and 6.  
 
To understand the effect of polarization on light propagation, we reconsider the wave 
equation. In the absence of magnetization and free current density, we have 

𝛻 × 𝐸ሬ⃗ = −
𝜕𝐵ሬ⃗

𝑑𝑡
 (2.20) 

𝛻 × 𝐵ሬ⃗ = 𝜖଴𝜇଴

𝜕𝐸ሬ⃗

𝜕𝑡
+ 𝜇଴

𝜕𝑃ሬ⃗

𝜕𝑡
 (2.21) 

Taking the curl of the top equation and the negative time derivative of the bottom equation 
as we did before, we find  

∇ × 𝛻 × 𝐸ሬ⃗ = −
𝜕

𝑑𝑡
൫∇ × 𝐵ሬ⃗ ൯ (2.22) 

−
𝜕

𝜕𝑡
൫𝛻 × 𝐵ሬ⃗ ൯ = −𝜖଴𝜇଴

𝜕ଶ𝐸ሬ⃗

𝜕𝑡ଶ
− 𝜇଴

𝜕ଶ𝑃ሬ⃗

𝜕𝑡ଶ
 (2.23) 

Comparing these two relations we see that the following is also true: 

∇ × 𝛻 × 𝐸ሬ⃗ = −𝜖଴𝜇଴

𝜕ଶ𝐸ሬ⃗

𝜕𝑡ଶ
− 𝜇଴

𝜕ଶ𝑃ሬ⃗

𝜕𝑡ଶ
 (2.24) 

                                                 
v Note that the equation doesn’t limit us to only light induced polarization. For example, shooting an electron 
through a thin piece of material will also cause charge motion, producing polarization and a field response 
that can in large part be described by Maxwell’s equations.   
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Again using the general vector relation  ∇ × ൫∇ × 𝐹⃗൯ =  −∇ଶ𝐹⃗ + ∇൫∇ ⋅ 𝐹⃗൯ we have 

−∇ଶ𝐸ሬ⃗ + ∇൫∇ ⋅ 𝐸ሬ⃗ ൯ = −𝜖଴𝜇଴

𝜕ଶ𝐸ሬ⃗

𝜕𝑡ଶ
− 𝜇଴

𝜕ଶ𝑃ሬ⃗

𝜕𝑡ଶ
 (2.25) 

Recall that ∇ ⋅ 𝐸ሬ⃗ = 𝜌/𝜖଴. Now that there are charges present (electrons, protons) we cannot 
generally state that ∇ ⋅ 𝐸ሬ⃗ = 0 inside materials. However, when dealing with homogeneous 
isotropic neutral materials excited with light, the resulting fields remain divergence-free. 
Under these assumptions we have obtained a similar wave equation as for the case of 
vacuum, but with an additional term related to polarization: 

∇ଶ𝐸ሬ⃗ = 𝜖଴𝜇଴

𝜕ଶ

𝜕𝑡ଶ ቆ𝐸ሬ⃗ +
𝑃ሬ⃗

𝜖଴
ቇ. (2.26) 

This relation still properly describes materials with a realistic non-instantaneous and even 
possibly a nonlinear and anisotropic response. In materials with a linear, isotropic, and 
instantaneous polarization response we can further simplify by using the relation 𝑃ሬ⃗ (𝑡) =

𝜖଴𝜒ఋ𝐸ሬ⃗ (𝑡), giving  

∇ଶ𝐸ሬ⃗ = 𝜖଴𝜇଴(1 + 𝜒ఋ)
𝜕ଶ𝐸ሬ⃗

𝜕𝑡ଶ
. (2.27) 

This relation states that electric fields that oscillate quickly (large double temporal 
derivative) must have large curvature in space (large double spatial derivative), i.e. must 
have short wavelength. In addition, it shows that a higher susceptibility also results in a 
shorter wavelength. Like the case of vacuum, this relation allows for plane-wave solutions, 
however with a modified phase velocity. We again substitute a scalar plane wave of the 
form 

𝐸(𝑡, 𝑧) = 𝐸௥ cos(𝑘𝑧 − 𝜔𝑡) (2.1) 

into the scalar wave equation, giving  

∇ଶ(𝐸௥ cos(𝑘𝑧 − 𝜔𝑡)) = 𝜖଴𝜇଴(1 + 𝜒ఋ)
𝜕ଶ

𝜕𝑡ଶ
(𝐸௥ cos(𝑘𝑧 − 𝜔𝑡)) (2.28) 

The double spatial derivative on the left adds a factor -k2 while the double temporal 
derivative on the right adds a factor -2. Dividing out common terms on the left and right 
results in the following dispersion relation linking  and k:  

𝜔

𝑘
≡ 𝑣௣ =

𝑐

ඥ1 + 𝜒ఋ

   (2.29) 

 

Note that the solution with the negative sign is again omitted, since it simply represents a 
wave propagating in the opposite direction. If there is no polarizable material (meaning 
=0) we reproduce the result of light propagation in vacuum at a phase velocity c. If on the 
other hand light is propagating inside a material with nonzero , we find that the speed of 
the wave is reduced by a factor ඥ1 + 𝜒ఋ . The wavelength is also reduced:  

𝜔

𝑘
=

𝜔

2𝜋/𝜆
=

𝑐

ඥ1 + 𝜒ఋ

   ⇒    𝜆 =
2𝜋𝑐

𝜔

1

ඥ1 + 𝜒ఋ

=
𝜆଴

ඥ1 + 𝜒ఋ

   (2.30) 
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We see that inside a polarizable material, both the speed of light and the wavelength are 
reduced by the same factor ඥ1 + 𝜒ఋ. This quantity is known as the refractive index n. For 
this somewhat unrealistic case of instantaneous response, we have 

𝑣௣ =
𝑐

ඥ1 + 𝜒ఋ

≡
𝑐

𝑛
,    𝜆 =

𝜆଴

ඥ1 + 𝜒ఋ

=
𝜆଴

𝑛
   

(2.31) 

 

We see that our trial plane wave with perfectly constant amplitude is an allowed solution 
to the wave equation. This corresponds to a wave that propagates ‘forever’ without losing 
amplitude. Apparently a material with instantaneous polarization response is entirely 
lossless. In the next Chapter we will consider a more realistic case, allowing for a finite 
response time for the electrons.  
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Chapter 3  - Light propagation in dispersive media 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
In the preceding Chapter we described light propagation in a material with instantaneous 
response, and we found an expression for the refractive index that did not depend on the 
frequency of the light. This is a reasonable approximation in transparent materials in a 
limited spectral range, but it is not generally applicable to realistic materials. In the 
following we consider materials in which polarization takes some finite time to build up in 
response to a field, which will result in a frequency-dependent complex refractive index 
and non-zero absorption.  

Time-dependent susceptibility – the impulse response 

As discussed in Chapters 1 and 2, applying an electric field to atoms in a material results 
in the appearance of dipole moment as a result of the electric force on the electron. In 
Chapter 2 we assumed for simplicity that bound electrons respond instantaneously to the 
field, meaning that the dipole moment would be perfectly in-phase with the electric field. 
In reality, an electron once pushed will keep moving for a while, meaning that charge 
motion (and dipole moment) can be changing after the force was applied. As an example 
in the sketch below, after briefly pushing an object, we might see some oscillatory motion 
after the push. In this case the position is clearly not linearly proportional to the force. 
 

 
Figure 3.1 

To describe a time-dependent response to a time-varying field, we consider a time-
dependent susceptibilityvi 𝜒(𝑡). This function represents the response to a single short 
(read: “delta function”) electric field pulse, and is called the ‘impulse response’.  
 
We can understand the concept of a 𝜒(𝑡) function as follows: after a short electric pulse 
𝐸(𝑡′), electrons in the material will have acquired some velocity that follows from the 
integration of their acceleration. For electrons initially at rest, the velocity after the short 
pulse is thus 

𝑣(𝑡) = න 𝑎(𝑡ᇱ)𝑑𝑡′

୲

ିஶ

= න
𝐹௘(𝑡ᇱ)

𝑚௘
𝑑𝑡′

௧

ିஶ

= −
𝑒

𝑚௘
න 𝐸(𝑡ᇱ)𝑑𝑡′

௧

ିஶ

 

We see that the electron velocity after a short pulse scales with the time integral of the 
electric field. After the short pulse the electrons will keep moving until the material slows 

                                                 
vi After Chapter 4 we will exclusively work with the frequency dependent susceptibility (), but it is helpful 
to understand how (t) and () are related. 
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them down. The resulting time-dependent charge movement and associated dipole moment 
will thus depend on the material response (damping that slows down the electrons, binding 
forces that pull back the electrons), which can be represented by a time-dependent 
susceptibility (t) (s-1).vii In general, to determine the polarization at some arbitrary time t, 
we would need to know all forces that the electrons experienced at all earlier times. 
Mathematically this can be written as: 

𝑃(𝑡) = 𝜖଴ න 𝐸(𝑡ᇱ) 𝜒(𝑡 − 𝑡ᇱ)𝑑𝑡ᇱ
ஶ

ିஶ

 (3.2) 

Here 𝑡ᇱ means “when was the field applied”, (t-t’) means “how long ago was that”, and 
𝜒(𝑡 − 𝑡ᇱ) tells us “should we still expect a response this much later”. Note that the integral 
seems to consider electric fields in the future (t’>t), but those signals do not contribute in 
since (t) is zero for t<0.  This makes sense: there should be no response before the force 
is applied, which is also known as the material having a ‘causal response’.   
 
In short, we have seen that in a realistic case of electrons with a non-instantaneous response 
to fields, we clearly cannot write a simple proportional relation between P(t) and E(t). 
Instead we need to carry out a somewhat complicated integral. However, if the material 
response is linear, i.e. if doubling the field strength produces double the polarization, it 
turns out that we can still find a simple relation between P and E, provided we consider 
excitation at a single frequency. The reason for this is that in linear media, exciting the 
electrons with a perfectly harmonic (sinusoidal) electric field results in an electron position 
(and thus polarization) that is also sinusoidal in time, but possibly with a phase delay. To 
describe such a phase-delayed polarization response to a harmonic field, we thus need two 
parameters: the magnitude of the response, and the phase delay of the response. This can 
be achieved with the use of a complex susceptibility, as discussed below.  

Real electric fields as a sum of complex exponents 

Before discussing the effect of complex susceptibility, we first introduce the notion of 
complex field amplitude. Measureable properties such as the electric field, the polarization, 
current, etc. are real quantities (as in “not complex”). A propagating oscillatory electric 
field is described by a real harmonic function such as a sine or cosine, for example    

𝐸(𝑡, 𝑧) = 𝐸௥ cos(𝑘௭𝑧 − 𝜔𝑡 + 𝜙). (3.3) 

Here  is a possible phase offset and Er is a real field amplitude. Although the field must 
be real, we can choose to describe this real field with complex numbers, using the general 

relation 𝑒௜ఏ = cos(𝜃) + 𝑖 sin(𝜃)   ⇒   cos(𝜃) =
ଵ

ଶ
൫𝑒௜ఏ + 𝑒ି௜ఏ൯. With this relation we can 

write our real electric field as  

𝐸(𝑡, 𝑧) =
1

2
𝐸௥ e௜(௞೥௭ିఠ௧ାథ) +

1

2
𝐸௥eି௜(௞೥௭ିఠ௧ାథ) (3.4) 

We can rewrite this as follows:  

𝐸(𝑡, 𝑧) =
1

2
𝐸௥  𝑒௜థe௜(௞೥௭ିఠ௧) +

1

2
𝐸௥𝑒ି௜థeି௜(௞೥௭ିఠ௧). (3.5) 

                                                 
vii Since the charge response depends on field strength and on the duration of the pulse, if follows that 𝜒(𝑡) 
must have units s-1. 
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If we define a complex field amplitude 𝐸଴ = 𝐸௥𝑒௜థ we can write our real field as a sum of 
complex oscillatory contributions: 

where c.c. stands for complex conjugate, meaning ‘with the opposite complex phase’ 
(achieved by changing all i terms to -i). Note that the complex amplitude E0 now contains 
information about both the magnitude of the field oscillation (given by |𝐸଴|) and the phase 
offset , described by the argument of the complex exponent. As stated earlier, this is 
exactly what we need to describe the polarization response of a material with a non-
instantaneous response.  
 
The analysis above helps understand the meaning of complex Fourier transforms. A time-
dependent real electric field E(t) cannot in general be described with a single harmonic 
wave, but according to Fourier theory it can be described as a superposition of harmonic 
functions with different frequencies and phases. The complex amplitude for all these 
frequencies is described by the Fourier amplitude E(). A real field at some fixed location 
z can thus be written as  

Note that we don’t explicitly have a complex conjugate term anymore. Instead this term is 
captured by including ‘negative frequencies’ in the Fourier integral. To clarify this, note 
that the integral above is exactly equal to the following integral over positive frequencies 
only:  

We see that the negative frequency contribution represents the complex conjugate term 
which ensures that we end up with a real field. Note that it follows that the Fourier 
transform of a real field time dependent field must satisfy the following relation: 

where the asterisk indicates taking the complex conjugate. This is known as the reality 
condition, which can also be written as  

where the single prime indicates the real part, and the double prime indicates the imaginary 
part. This is a general rule for the Fourier transform of real time-dependent quantities.  

Frequency dependent susceptibility 

Now that we understand complex amplitudes and Fourier transforms, we can derive a 
simplified relation between P and E in a realistic non-instantaneous material. First we write 
all time dependent quantities in their Fourier form, i.e. we use our Fourier description of 
E(t), as well as polarization P(t) and susceptibility (t), i.e. we will use  

𝐸(𝑡, 𝑧) =
1

2
𝐸଴ e௜(௞೥௭ିఠ௧) + 𝑐. 𝑐. (3.6) 

𝐸(𝑡) = න 𝐸(𝜔) 𝑒ି௜ఠ௧𝑑𝜔

ஶ

ିஶ

 (3.7) 

𝐸(𝑡) = න 𝐸(𝜔) 𝑒ି௜ఠ௧ +  𝐸(−𝜔) 𝑒ା௜ఠ௧   𝑑𝜔

ஶ

଴

. (3.8) 

𝐸(𝜔) = 𝐸∗(−𝜔) (3.9) 

𝐸ᇱ(𝜔) = 𝐸ᇱ(−𝜔)      𝐸ᇱᇱ(𝜔) = −𝐸ᇱᇱ(−𝜔) (3.10) 
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and  

Substituting these descriptions of P(t), (t), and E(t) into Eq. 3.2, repeated here with the 
integration limits omitted for simplicity of notation:  

we obtain  

where we have replaced the frequency argument in the Fourier integral of (t) with 𝜔ᇱ to 
distinguish it from the frequency argument of 𝐸(𝑡). Switching the order of integration and 
grouping terms that depend on t we get the following: 

The integral ∫ 𝑒௜(ఠᇲିఠ)௧ᇲ
 𝑑𝑡ᇱ = 2𝜋𝛿(𝜔′ − 𝜔), giving 

Integrating over 𝜔ᇱ we are left with  

In this expression and the preceding ones, () always represented the Fourier transform 
of 𝜒(𝑡), also written as ℱ[𝜒(𝑡)]. The relation above needs to satisfied for arbitrary 
distributions E(), which in turn implies that it must be true for each separate frequency 
component.viii  We have arrived at the relation  

The entire quantity 2𝜋ℱ[𝜒(𝑡)] is commonly written as 𝜒(𝜔) even though it’s not strictly 
speaking the Fourier transform of 𝜒(𝑡). In practice this rarely leads to confusion, since 
frequency dependent response is usually measured or modeled, rather than being 
determined from a measured time-dependent susceptibility. With that convention in mind, 
we have found 

                                                 
viii This can by shown formally by Fourier transforming both sides of the equation, e.g. replacing frequency 
arguments left and right with ’ and ’’, and doing a Fourier Transform to  on both sides. This introduces 
exponents of the form 𝑒௜(ఠିఠᇲ)௧ which act as a delta function, removing the integrals.     

𝑃(𝑡) = න 𝑃(𝜔) 𝑒ି௜ఠ௧𝑑𝜔

ஶ

ିஶ

 (3.11) 

𝜒(𝑡) = න 𝜒(𝜔) 𝑒ି௜ఠ௧𝑑𝜔

ஶ

ିஶ

 (3.12) 

𝑃(𝑡) = 𝜖଴ න 𝐸(𝑡ᇱ) 𝜒(𝑡 − 𝑡ᇱ)𝑑𝑡ᇱ (3.2) 

න 𝑃(𝜔) 𝑒ି௜ఠ௧𝑑𝜔 = 𝜖଴ න න 𝐸(𝜔) 𝑒ି௜ఠ௧ᇲ
𝑑𝜔 න 𝜒(𝜔′) 𝑒ି௜ఠᇲ(௧ି௧ᇲ)𝑑𝜔ᇱ 𝑑𝑡ᇱ (3.13) 

න 𝑃(𝜔) 𝑒ି௜ఠ௧𝑑𝜔 = 𝜖଴ න න 𝐸(𝜔)𝑑𝜔  𝜒(𝜔′) 𝑒ି௜ఠᇲ௧ න  𝑒௜൫ఠᇲିఠ൯௧ᇲ
𝑑𝑡ᇱ  𝑑𝜔′. (3.14) 

න 𝑃(𝜔) 𝑒ି௜ఠ௧𝑑𝜔 = 𝜖଴ න න 𝐸(𝜔)𝑑𝜔 𝜒(𝜔′) 𝑒ି௜ఠᇲ௧2𝜋𝛿(𝜔ᇱ − 𝜔)𝑑𝜔′. (3.15) 

න 𝑃(𝜔) 𝑒ି௜ఠ௧𝑑𝜔 = 2𝜋𝜖଴ න 𝜒(𝜔)𝐸(𝜔)𝑒ି௜ఠ௧𝑑𝜔. (3.16) 

𝑃(𝜔) = 𝜖଴ ( 2𝜋ℱ[𝜒(𝑡)] ) 𝐸(𝜔). (3.17) 
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We have derived a linear relation between the field and the polarization, but now in the 
frequency domain. Crucially, we have found that 𝜒(𝜔) in a realistic causal system is an 
intrinsically complex quantity that describes the magnitude of the polarization response, as 
well as the phase delay of the polarization response relative to a harmonic excitation field. 
The sketch below shows an example: a harmonic driving field induces a harmonic 
oscillating polarization. The polarization appears with a phase delay with respect to the 
driving field. This means that the phase argument of 𝑃(𝜔) needs to be different than that 
of 𝐸(𝜔). This is captured by the phase argument of 𝜒(𝜔).  

 
Figure 3.2 

In short, we see that in a realistic material, the susceptibility automatically becomes 
complex. This behavior is unavoidably accompanied by absorption, as discussed below.   

Wave propagation in a material with complex susceptibility 

We previously found the scalar wave equation which describes wave propagation inside 
homogeneous, isotropic materials:  

We try solutions of the form  

Here 𝑘ఠ is the as yet unknown wavevector required to satisfy the wave equation at for the 
field contribution oscillating at .  We showed that in linear systems at a given , P and E 
have a fixed phase relation. To achieve this, at a minimum P and E must move at the same 
velocity, i.e. they must have the same wavevector. If the scalar wave equation must hold 
for electric fields and polarizations, it can easily be shown that the scalar wave equation 
must also hold for individual frequency contributions in the Fourier integrals. For real 
waves described by complex amplitudes, apparently we must have   

Taking the spatial and temporal derivatives and dividing out all shared factors 𝑒௜(௞ഘ௫ିఠ ), 
we arrive at the relation  

𝑃(𝜔) = 𝜖଴ 𝜒(𝜔)𝐸(𝜔). (3.18) 

∇ଶ𝐸 = 𝜖଴𝜇଴

𝜕ଶ

𝜕𝑡ଶ
൬𝐸 +

𝑃

𝜖଴
൰ (3.19) 

𝐸(𝑥, 𝑡) = න 𝐸(𝜔)𝑒௜(௞ഘ௫ିఠ௧)𝑑𝜔 ,    𝑃(𝑥, 𝑡) = න 𝑃(𝜔)𝑒௜(௞ഘ௫ିఠ௧)𝑑𝜔. (3.20) 

∇ଶ൫𝐸(𝜔)𝑒௜(௞ഘ௫ିఠ௧)൯ = 𝜖଴𝜇଴

𝜕ଶ

𝜕𝑡ଶ ቆ𝐸(𝜔)𝑒௜(௞ഘ௫ିఠ௧) +
𝑃(𝜔)𝑒௜(௞ഘ௫ିఠ௧)

𝜖଴
ቇ (3.21) 

−𝑘ఠ
ଶ 𝐸(𝜔) = 𝜖଴𝜇଴(−𝜔ଶ𝐸(𝜔) − 𝜔ଶ𝑃(𝜔)/𝜀଴) (3.22) 
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Now substituting the complex relation between P and E, and simplifying we findix   

where we have written k as k(), and where 𝜔/𝑐 is simply the vacuum wavevector 𝑘଴ =
2𝜋/𝜆଴. We can also define a complex relative permittivity 𝜀௥ as 

which leads to the relation  

Comparing with our previous relation 𝑘 = 𝑛𝜔/𝑐, we can also write this in terms of a 
complex refractive index, which we will write as ().   

We have found a dispersion relation describing the link between wavevector and angular 
frequency. Critically, the susceptibility, dielectric function, and refractive index are all 
complex. This means that if we excite a real material at a constant frequency 𝜔, Maxwell’s 
equations dictate that our plane wave must have a complex wavevector! As we will see 
below, this implies nonzero absorption of the wave. First, let’s establish the relations 
between , , and r.    
 
We have the relation 

The real and imaginary parts of  will be written as n and , i.e.  

The real and imaginary parts of the susceptibility will be written as 𝜒ᇱ and 𝜒ᇱᇱ, i.e.  

Explicitly writing the real and imaginary parts of  and  we thus havex   

Taking the square of both sides, grouping real and imaginary parts, and omitting the 
frequency arguments, we find  

These relations provide a straightforward way to find the susceptibility from a complex 
refractive index. Finding the refractive index from a complex dielectric function is more 
involved. The simplest way is taking a complex root of 𝜀௥ on a calculator. If that’s not an 
option, the following relations can be used:  

                                                 
ix We ignore the negative root here, which simply represents a wave propagating in the opposite direction. 
x This still ignores magnetic effects, and assumes that the material is isotropic, homogeneous, and linear.  

𝑘(𝜔) =
𝜔

𝑐
ඥ1 + 𝜒(𝜔) (3.23) 

𝜀௥ ≡ 1 + 𝜒(𝜔) (3.24) 

𝑘(𝜔) =
𝜔

𝑐
ඥ𝜀௥(𝜔) (3.25) 

𝑘(𝜔) =
𝜔

𝑐
𝜂(𝜔) (3.26) 

𝜂(𝜔) = ඥ𝜀௥(𝜔) = ඥ1 + 𝜒(𝜔) (3.27) 

𝜂(𝜔) ≡  𝑛(𝜔) + 𝑖𝜅(𝜔) (3.28) 

𝜒(𝜔) ≡  𝜒′(𝜔) + 𝑖𝜒′′(𝜔) (3.29) 

𝑛(𝜔) + 𝑖𝜅(𝜔) = ඥ1 + 𝜒ᇱ(𝜔) + 𝑖𝜒ᇱᇱ(𝜔) (3.30) 

𝑛ଶ − 𝜅ଶ = 1 + 𝜒ᇱ = 𝜀௥
ᇱ           2𝑛𝜅 = 𝜀௥

ᇱᇱ = 𝜒ᇱᇱ (3.31) 
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where the magnitude of 𝜀௥ is simply |𝜀௥| = ඥ𝜀௥
ᇱଶ + 𝜀௥

ᇱᇱଶ. While these relations are exact, 
they may give inaccurate results for  on a calculator in the common case of small 
imaginary index (and small absorption). In such cases it is better to use the low-absorption 
approximation described in Appendix H.  
 
As stated above, a complex refractive index implies that the wavevector, given by 𝑘 =
𝜂𝜔/𝑐, also becomes complex:   

where we have again used the free-space wavevector 𝑘଴ = 𝜔/𝑐 = 2𝜋/𝜆଴. A plane wave 
of the form 

with a complex wavevector 𝑘 = 𝜂𝑘଴ = (𝑛 + 𝑖𝜅)𝑘଴ becomes  

We see that the complex nature of the refractive index results in a position dependent field 
amplitude of magnitude |E(z)|=|E0e- k0 z|. 

Absorption coefficient 

The position dependent field amplitude derived in the preceding section implies light 
absorption. Propagating EM waves carry optical power, which is described by the quantity 
irradiance, representing incident power per unit area (W/m2). Using the expressions for 
the energy density in electric and magnetic fields, as well as the expression for the speedxi 
of light and the ratio between E and B from Maxwell’s equations, it can be shown that a 
plane wave with amplitude E carries an irradiance:  

In our non-instantaneous material, we thus find a position dependent irradiance given by  

where I0 is the initial irradiance at position z=0. The term  is known as the absorption 
coefficient, given by         

                                                 
xi Technically we need the group velocity in this analysis rather than phase velocity, but in most cases the 
phase velocity and group velocity are almost identical. 

𝑛 = ඥ(|𝜀௥| + 𝜀௥
ᇱ )/2         𝜅 = ඥ(|𝜀௥| − 𝜀௥

ᇱ )/2 (3.32) 

𝑘(𝜔) ≡ 𝑘ᇱ(𝜔) + 𝑖𝑘ᇱᇱ(𝜔) = 𝜂(𝜔) ቀ
𝜔

𝑐
ቁ = 𝑛𝑘଴ + 𝑖𝜅𝑘଴ (3.33) 

𝐸(𝑡, 𝑧) =
1

2
𝐸଴ e௜(௞೥௭ିఠ௧) + 𝑐. 𝑐. (3.34) 

𝐸(𝑡, 𝑧) =
1

2
𝐸଴ e௜((௡ା௜఑)௞బ௭ିఠ௧) + 𝑐. 𝑐. = eି఑௞బ௭ ൬

1

2
𝐸଴e௜(௡௞బ௭ିఠ௧) + 𝑐. 𝑐. ൰ (3.35) 

𝐼 ൬
𝑊

𝑚ଶ
൰ =

1

2
𝑛𝑐𝜖଴|𝐸|ଶ (3.36) 

𝐼(𝑧) =
1

2
𝑛𝑐𝜖଴|𝐸(𝑧)|ଶ =

1

2
𝑛𝑐𝜖଴|𝐸଴|ଶ 𝑒ିଶ఑௞బ௭ ≡ 𝐼଴𝑒ିఈ௭ (3.37) 

𝛼 = 2𝜅𝑘଴ = 2𝜅
𝜔

𝑐
=

4𝜋

𝜆଴
𝜅 (3.38) 
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Associated with the absorption coefficient is the quantity 1/e depth d1/e or ‘skin depth’ 𝛿, a 
term that is most commonly used when describing highly absorbing materials such as 
metals. The skin depth is the depth d at which the irradiancexii has dropped by a factor e, 
reaching ~36.8% of its initial value. This occurs when the term 𝛼𝑧 = 1, resulting in   

The last version of the expression of the 1/e depth provides a convenient way of estimating 
the absorption depth based on a given . If we make the extremely crude approximation 
that 4𝜋 ≈ 10, we easily see that an imaginary index of 0.1 gives a 1/e depth of ~0. 
Apparently, an imaginary index of 𝜅 = 0.1 causes most of the incident light to be absorbed 
within one optical wavelength. This is a huge absorption coefficient. If you memorize this 
single data point, all other values of  are easily estimated: for every reduction of  by a 
factor 10 the 1/e depth becomes a factor 10 larger. We found 𝜅 = 0.1 → 𝑑ଵ/௘ ≈  1𝜆଴ so it 
follows that 𝜅 = 0.01 → 𝑑ଵ/௘ ≈  10𝜆଴, and 𝜅 = 0.001 → 𝑑ଵ/௘ ≈  100𝜆଴ etc. This 
approximate relation is worth memorizing, because it will help make a quick estimate of 
light transmission through thick samples.  
 
Example:  if green light (𝜆଴ = 0.5 𝜇𝑚) enters a 1 mm thick piece of glass with a seemingly 
small 𝜅(𝜔) = 0.0001, we now know that the 1/e depth is about a thousand wavelengths, 
or ~0.5 mm. Ignoring reflection losses, a 1mm piece of this glass will thus transmit about 
(1/e)2 of the incident light (a factor 1/e for every 0.5 mm), resulting in a transmission of 
about 14%. Apparently even a ‘small’ value of 𝜅 = 10ିସ is enough to produce a very 
significant amount of absorption in samples that are of the order of 1 mm thick.  

                                                 
xii Note, in electrical engineering the term “skin depth” usually refers to the 1/e depth of the electric field 
magnitude, resulting in double the skin depth compared to the values used in this text. 

𝛿 =
1

𝛼
=

1

2𝜅𝑘଴
=

𝑐

2𝜅𝜔
=

1

4𝜋𝜅
 𝜆଴ (3.39) 
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Chapter 4 – Kramers-Kronig relations 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
In the preceding Chapter we learned that a material with a realistic non-instantaneous 
electron response had a complex refractive index, with frequency dependent real refractive 
index (‘dispersion’) and frequency dependent absorption coefficient. This implies that 
absorption and refractive index are related quantities. It turns out that there is an elegant 
relation that links measured absorption spectra to the corresponding index spectrum. This 
relation is one of the Kramers-Kronig relations. In this Chapter we will derive the Kramers-
Kronig relations, and show some examples of how they can be used to make predictions 
about dispersion.  

Kramers-Kronig relations for susceptibility 

“Kramers-Kronig” relations link ’() and ”(),  n() and (), and   R() and (). 
We start by deriving the KK relation linking ’() and ”(). The starting point is the 
time-dependent polarization: 

      '''0 dttttEtP  



  (4.1) 

      response function (linear) 
 
The polarization response function must obey causality, i.e. the effect cannot precede the 
cause.  This can be explained mathematically as follows: 
 
Mathematical statement of causality: 

0,0  tE      (4.2) 

i.e.  no response before E applied 

  0 t  for 0t  

or   0'  tt  for 'tt  . 

This can be expressed quite compactly using the “step function” 

     ttt    (4.3) 

where,   








01

00

t

t
t   is the Heaviside function or unit step function 

 
Actually, any function that equals unity for t>0 and equals anything but unity for t<0, will 
do.  For example, the Signum function, defined as 

 








01

01

t

t
tSgn ,  (4.4) 

will work just as well. (As it must.) 
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So we now have a time-domain statement of causality that can be Fourier transformed for 
give a frequency domain statement of causality: 

           dtettttF ti 



  (4.5) 

but,   

    '' '   det ti



  (4.6) 

       tietddt '''  





   

      tietdtd '''  





  . (4.7) 

Hence,    

       tietdtd '''  





   

   '''   



d . (4.8) 

Now the Fourier Transform of  the step function is well known: 

      



22

1 i
tF   (4.9) 
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

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 

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
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   
 '2

'
'

22

1








 




d

i . (4.11) 

 
Which gives the statement of causality in the frequency domain:   

   



 
 '

'

' 




 d

i . (4.12) 

We can make use of the “i” in the relationship to find cross relations for the real and 
imaginary parts of .  Splitting () into its real and imaginary parts: 

      ''' i  

    
'

'
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

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
dd

i
 






 



  (4.13) 

Which yields two equations: 

   



 
 '

'

'"1
' 





 d  (4.14) 

   
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

 
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" 





 d  (4.15) 
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These are the “Kramers-Kronig” relations for (). 
 
We can use the results of the reality condition, (’() is even, ”() is odd) to re-write 
these integrals in terms of positive frequencies only: 

   






0 22
'

'

'"'2
' 





 d  (4.16)

 

and 

   






0 22
'

'

''2
" 





 d . (4.17) 

Relation between ( and X’’) and (n and X’) for weak susceptibility 

For a weak susceptibility (rarified media, gases), we have |’| , |”| << 1.  In this case, 

2

)("

2

)('
1)(")('1)()(

 iiin  , (4.18) 

so that,      

2

)('
1)(

 n  ,   and    (4.19) 

)(")(
2

)("
)( 

c
  (4.20) 

 
We can now use these approximate relations to find the Kramers-Kronig relation for index 
and absorption: 

   

 













0 22

0 22

'
'

'
1)(

'
'

'/''1
1)(2

'













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d
c

n

d
c

n
 (4.21) 

Although this has been derived for a weak susceptibility, it is actually true in general.  This 
is a very useful relation, as it is relatively easy to measure () over a broad wavelength 
band. 

The dispersion of refractive index around a resonance 

It is worth looking at the form of the Kramers-Kronig integrals, to see what the lead us to 
expect about the relationship between n() and (), etc.  Let us consider a material with 
a single, moderately narrow absorption line.  In Figure 4.1 we sketch such a line, where 
res is the resonance frequency, or frequency.  (This could be 1 rad/s, 1 Hz, or one hundred 
terahertz, or whatever units we desire.)  The refractive index at any frequency  depends 
on the integral of (’), multiplied by 1/(’2 - 2), so we also plot the function 1/(’2 - 2) 
below for two cases: one where the frequency, , is just above the peak absorption and one 
where  is just below the peak absorption. 
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Clearly for > res, the integral of the product is negative which is to say that the n() due 
to a particular resonance is < 1 for frequencies above that resonance.  Similarly, frequencies 
below a resonance, the refractive index arising from that resonance is positive.  If the 
resonance is symmetric, then for  = res, the refractive index due to the absorption line 
will be unity – i.e. the absorption line will not affect the refractive index exactly at the 
resonance frequency. 
 

 
Figure 4.1 

The above observations are generally true, regardless of the precise shape of the absorption 
resonance.  Certainly, the exact shape of () will affect the precise shape of n(), but 
here we are only talking in generalities.  It is also important to note that we make no 
assumptions about the physical process giving rise to the absorption line, as it is irrelevant 
to these general observations. – There can be no exception to the Kramers – Kronig 
relations. – If there is an absorption line in a material, then it will cause the refractive index 
to be increased below resonance and decreased above.  Usually, a material will have several 
absorption resonances, which may occur in the infrared, in the visible and in the ultraviolet.  
At very low frequencies, say in the far infrared, which lie below all resonances, the index 
may therefore be quite high, as all absorption resonances contribute positively at these low 
frequencies.  We can also conclude that at very high frequencies, say in the ultraviolet, for 
which all resonances are at lower frequencies, the refractive index must be below unity.  
This last fact is not widely known, but as we see from our analysis, it is inescapable and 
must be true for all materials.  As we examine different types of materials and physical 
processes that give rise to light-matter interactions, we will see again and again that these 
general predictions that come from the Kramers-Kronig relations are always fulfilled. 
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Figure 4.2 

 
To get a general spectrum of n(), (usually referred to as the dispersion of n) we just 
calculate the result of the Kramers-Kronig integral repeatedly for many values of .  The 
result for n() for the absorption line shown in Figure 4.2, where we have arbitrarily 
expanded the scale for (n-1) to show it on the same scale as (). 

Derivation of Kramers-Kronig relations by Cauchy’s integral theorem 

Given that,  

      '''0 dttttEtP  



  ,  (4.22) 

and that  

)()()( 0  EP  ,  (4.23) 

where,   

    dtet ti 



 .   (4.24) 

Now by causality, the above integral need only run over positive times: 

     dtet ti 



0

,  (4.25) 

i.e. t is always positive in the integral.  Now, we can let  be complex, so that, ='+i" 
giving 

    dteet tti "'

0

 

  .  (4.26) 

and since t is always positive, the factor e-”t tells us that for positive ”, the function () 
has a regular analytic continuation in the positive imaginary half of the complex plane of 
.   
 

-4

0

4

0 0.5 1.0 1.5 2.0

50 [n() - 1]
(')

'/
res



 32

By Cauchy’s integral theorem, the closed path integral of a function that is analytic in a 
simple domain yields a zero result.  Now we consider the integral 

0
)(


c
d




, (4.27) 

where C is a closed path in the upper half plane of  that avoids all poles (singularities), as 
shown on the next page.   
 

 
Figure 4.3 

We can look at the four main parts of the integral.  First, the large semicircle, defined by  
= ei, where  runs from 0 to .  In the limit as   , this part of the integral becomes 
zero, provided that () is reasonably well behaved, or more specifically, provided that  

0
)(

lim 





 



.   

The small semicircle is centered on a pole caused by the 1/(-) term.  By the Residue 
Theorem, in the limit of vanishingly small radius, , we have, 
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d

, (4.28) 

(i.e. a “half-residue” of the integrand at .)  The straight sections of the integral, in the 
limit of   0, become; 
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where  denotes the Cauchy Principal Value.  Hence the sum of the four parts of the path 
integral becomes 
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i.e. 
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which is the Kramers-Kronig relation as previously derived. This is basically just Cauchy’s 
Integral Theorem. (The principal value () label really just means that we should avoid 
the pole, but in practice, this turns out to be trivial, so we will not continue to use .) 
 
The above analysis is less physically insightful than the one given before, but this is the 
treatment usually given for Kramers Kronig relations in most texts.   It is also convenient 
to use, since any causal function that is analytic in the upper-half plane can be treated in 
the same way, and this can save some time in deriving Kramers-Kronig relations.  This is 
the case for the relations for the relations between the amplitude and phase of a reflected 
wave, which we treat next. 

Kramers-Kronig relations for Reflected Amplitude and Phase 

There exists a very useful type of Kramers-Kronig relation that relates the phase and 
amplitude of reflection from an interface.  Now the reflectance, 

R() = r()r*() (4.32) 

Where r() is the electric field amplitude reflection coefficient, which for an air-material 
interface, is given by 
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


 . (4.33) 

Now we can also write r() in terms of a phase and an amplitude: 

)()()(  ier  ,  (4.34) 

where () is the phase shift upon reflection.  (Note – this is NOT the unit step function, 
(t), used earlier.)  Clearly, if we can completely determine both r() and (), we can 
completely determine both n() and ().  Now, it is relatively straight forward to 
determine R(), but it is hard to imagine how we could easily measure () over a large 
spectral range.  We would like to find a Kramers-Kronig relation that relates () to (), 
but we note that while we can do this for complex analytic functions of the form () = 
’() +i ”(),  or () = n() + i (), we cannot do so for a function of the form r() = 
()exp(i()).  – We could always find a Kramers-Kronig relation between r’() and 
r”(), but this is of no particular use, as we cannot easily individually measure either the 
real or the imaginary part of r().  However, if we take the log of r(), we get 

    )()(ln)(ln  ir  ,  (4.35) 

for which, via the Cauchy integral theorem, we can write down a pair of Kramers-Kronig 
relations: 
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 (4.36) 

where, as usual, the “principal value” of the integral is to be taken.  Clearly the second of 
the two relations is the more useful, in the same sense that the relation that gives n() in 
terms of () is more useful than one that gives  in terms of n. – It is much easier to 
measure amplitudes than phase.  We can re-write this integral in terms of positive 
frequencies only: 
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 (4.37) 

Note that our previous approach of applying causality in the form of a step function in the 
time domain is not valid in the same way as for , as for t < 0,  = 0 gives ln  = -, which 
is not so easy to handle.  For the same reason, one might look at this integral and conclude 
that it probably will not work, as for regions where R()  0, ln   -.  Nevertheless, it 
still seems to work, as we shall see from the homework assignment.  Those who are 
interested may read the details in Wooten, but the scope of this course is limited to the 
results. 
 
There is a useful trick to remove the singularity at ’ = .  We may simply subtract the 
quantity 
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from the integral in the KK relation.  Hence 
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Hence as   ’, R(’)/R()  1 and hence ln{ R(’)/R() }  0.  We can apply the 
L’Hopital rule to see that the divergence is removed.  
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Chapter 5 – Lorentz model of the optical properties of dielectrics 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
In Chapter 3 we learned that optical effects such as reflection, transmission, and absorption 
are related to the refractive index, which followed from the complex susceptibility. This 
means that we can make a prediction of the optical properties of materials if we can develop 
a model for (). In this chapter we will discuss the optical response of materials that have 
a strong absorption at one or more well-defined frequencies. We will first derive the 
response of a simplified atom using what is known as the Lorentz model, which describes 
the electrons that surround atoms as being bound to the atom core with a phenomenological 
spring constant. It gives a fairly realistic prediction of dispersion of the refractive index in 
regions of low absorption, and an approximate understanding of n and  trends near strong 
absorptions.  

Classical Lorentz oscillator model for absorption & dispersion 

Atoms consist of a positive atom core containing protons (charge per proton +1e) and 
neutrons. The total electric charge of the atom core is +eZ where Z is the atomic number 
Z. The atomic number of most commonly used materials ranges from 1-100. A neutral 
atom is surrounded by a total of Z electrons. These electrons are bound to the atom core by 
Coulomb interaction forces, orbiting the core with a spatial distribution described by 
quantum mechanics (see Chapter 9). For atoms with large Z, some of the electrons are 
bound very tightly to the core, called core electrons, orbiting the cores at small distance.  
Other electrons occupy larger orbits, circling the positive core and its tightly bound core 
electrons. Consequently, these outer electrons experience a smaller net positive charge 
from the core, and therefore smaller Coulomb binding forces. The outermost electrons that 
finally make the atom neutral are called the valence electrons. These electrons ‘see’ the 
least attractive force, and are therefore easiest to move. As a result, the valence electrons 
often account for most of the polarization response of atoms.  
 

 
Figure 5.1 

The Lorentz model takes all these elements to build the simplest possible mechanical model 
of an atom. This model makes several key assumptions. First of all, it assumes that 
movement of the atom core can be neglected, which is reasonable given that the core mass 
is well over three orders of magnitude larger than the electron mass. Second, the Lorentz 
model considers only the valence electrons, assuming that the core electrons are so tightly 
bound that the electromagnetic wave is practically unable to move them (‘no core electron 
response’).  Third, it assumes that valence electrons are bound to the core in an effectively 
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harmonic (quadratic) binding potential. This somewhat reasonable: without an applied 
electric field the electrons are in a steady state around the core, and therefore in a minimum-
energy configuration. Moving the electrons out of equilibrium will result in a restoring 
force that tries to bring the electrons back into equilibrium. The Lorentz model assumes 
that this restoring force is linearly dependent on the displacement from equilibrium r, a 
relation known as Hooke’s Law: 

Fሬ⃗ ௥ = −𝐾 𝑟 (5.1) 

Here K is the ‘spring constant’ (units N/m) in analogy with the classical mass-on-a-spring 
model. This linear force response implies that the potential energy increases quadratically 
with increasing position, which is called a ‘harmonic’ binding potential. Fourth, it assumes 
that the atom responds isotropically and along the applied driving force, which allows us 
describe the electron position with a scalar r(t), the distance from the core.  
 
Before investigating the various forces that determine the electron motion, we first rewrite 
the spring constant by considering the response of the electron without an external electric 
field. Newton’s second law of motion states that 𝐹 = 𝑚 𝑎 = 𝑚 𝑟̈. In the absence of any 
external driving forces this predicts that the position r of a valence electron will behave as 

𝑟̈(𝑡) = −
𝐾

𝑚௘
𝑟 (5.2) 

with me the electron rest mass. This type of relation can be satisfied by oscillatory functions 
of the form r(t)  sin(t) or r(t)  cos(t),  orxiii  r(t)  exp(-it).  Substituting a trial 
solution of the form r(t)=r0 exp(-it) with r0 related to the motion amplitude we find   

𝑟̈(𝑡) = −ωଶ𝑟଴ eି୧ன୲ = −
𝐾

𝑚௘
𝑟଴ eି୧ன୲   ⇒    𝜔 = ඨ

𝐾

𝑚௘
  (5.3) 

The see that the valence electron in this simple model has a natural oscillation frequency 
which we will refer to as ‘the resonance frequency’, labeled as 0. We have thus found a 
relation between the spring constant K and the resonance frequency:  

𝐾 = 𝑚𝜔଴
ଶ (5.4) 

In many of the upcoming equations we will write the spring constant K as 𝑚𝜔଴
ଶ.  

 
As in any realistic physical system electron motion will not continue forever. The electron 
motion is said to be ‘damped’, with the electron gradually losing energy as it oscillates, 
leading to a reduced amplitude over time. In the Lorentz model this is phenomenologically 
described by a ‘friction force’ Ff corresponding to momentum loss at a rate  (units s-1) :   

𝐹௙(𝑡) =
𝑑൫𝑚𝑣(𝑡)൯

𝑑𝑡
= −Γ ൫𝑚𝑣(𝑡)൯  ⇒   𝐹௙ = −m Γ ṙ(t)  (5.5) 

In reality this ‘friction’ represents many possible causes of loss of motion, for example 
random collisions with other atoms, coupling to vibrations in a crystal (‘electron-phonon 
coupling’), emission of light (‘radiative relaxation’), energy transfer to other electrons 
(‘electron-electron interactions’ including effects such as Auger relaxation), to name a few. 

                                                 
xiii The exponential expression leads to a complex amplitude, which can be turned into a real amplitude by 
also considering an oscillatory term with the opposite angular frequency, as shown in Chapter 3 
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To predict the optical response of valence electrons in the presence of an oscillatory 
electromagnetic field the Lorentz model only considers electric forces given by  

𝐹௘(𝑡) = −𝑒𝐸(𝑡) (5.6) 

where e is again the electric unit charge. The electron response follows from the equation 
of motion F=ma taking into account the electric driving force, the friction force (damping 
rate), and the restoring force. The total equation of motion thus becomes 

𝑚 𝑟̈(𝑡) = −𝑒𝐸(𝑡) − 𝑚Γ𝑟̇(𝑡) − 𝑚𝜔଴
ଶ 𝑟(𝑡) (5.7) 

In a linear system we expect that driving at single frequency  results only in responses 
that occur at that same frequency. We can assume a real electric field E(t) of the form  

𝐸(𝑡) =
1

2
𝐸(𝜔)𝑒ି௜ఠ௧ + 𝑐. 𝑐. (5.8) 

and assume that the electron position occurs at the same frequency, described by:  

We substitute a trial solution containing only the positive  contribution.xiv After dividing 
out common terms on both sides, this results in: 

−𝑚𝜔ଶ 𝑟(𝜔)  − 𝑚𝛤𝑖𝜔 𝑟(𝜔) + 𝑚𝜔଴
ଶ 𝑟(𝜔) = −𝑒 𝐸(𝜔) (5.10) 

This leads to an expression for the (complex) harmonic motion amplitude r() in response 
to a harmonic driving field with amplitude E(): 

𝑟(𝜔) = −
𝑒

𝑚௘
 

1

𝜔଴
ଶ − 𝜔ଶ − 𝑖Γ𝜔

𝐸(𝜔) (5.11) 

We can now find an expression for the dipole moment , which is defined as charge times 
separation distance. Since the atom core is assumed to be stationary at position zero, the 
dipole moment becomes simply qe r = -er. The Lorentz model thus predicts an oscillatory 
dipole moment with amplitude  

𝜇(𝜔) =
𝑒ଶ

𝑚௘
 

1

𝜔଴
ଶ − 𝜔ଶ − 𝑖Γ𝜔

𝐸(𝜔) (5.12) 

Before we convert this expression to polarization, it’s helpful to look at some limiting 
behavior. The Lorentz description of the dipole moment of a valence electron on a single 
atom reproduces several properties that were already predicted in Chapter 1. For example: 
at very low frequencies (  0) we see an amplitude  

𝜇(0) =
𝑒ଶ

𝑚௘
 

1

𝜔଴
ଶ 𝐸(𝜔) . (5.13) 

Note that (0) that is real and positive, which means that the dipole moment is in-phase 
with the driving field. This is expected: Hooke’s law in constant field leads to equilibrium 
when Fe + Fr = 0, leading to a fixed dipole moment linearly proportional to E. Also note 

                                                 
xiv The corresponding negative frequency component follows simply by exchanging – for each  term. 

𝑟(𝑡) =
1

2
𝑟(𝜔)𝑒ି௜ఠ௧ + 𝑐. 𝑐. (5.9) 



 38

that this static dipole moment depends inversely on 0
2. This also makes sense: we saw 

that 𝐾 ∝ 𝜔଴
ଶ. If the spring is twice as stiff, the same force will yield half as much electron 

displacement, and thus half as much dipole moment.   
 
As the excitation frequency increases the term 𝜔଴

ଶ − 𝜔ଶ initially reduces, the magnitude of 
the denominator drops rapidly, corresponding to a larger magnitude of . This is something 
we predicted in Chapter 1: for excitation near resonance we expect larger motion 
amplitude. As we approach 0 the imaginary contribution −𝑖Γ𝜔 in the denominator 
becomes more significant. Since the numerator in the expression for the dipole moment is 
real, the complex nature of the denominator includes all phase information about the dipole 
response relative to the driving field. When we excite on resonance, i.e. when we use  = 
0 we find  

𝜇(𝜔଴) =
𝑒ଶ

𝑚௘

1

−𝑖Γ𝜔
𝐸(𝜔) =  

𝑒ଶ

𝑚௘

𝑖

Γ𝜔
𝐸(𝜔) . (5.14) 

Note that our time dependent field for positive  was described by a field contribution of 
the 𝐸(𝜔)𝑒ି௜ఠ௧  corresponding to a clockwise rotating complex vector. We see that when 
this field contribution is positive and real, the dipole moment is entirely imaginary, 
corresponding to a 90 phase delay relative to the driving field. Also note that small 
damping (small ) results in large dipole moment on resonance, as expected.  
 
When we excite at high frequency with  >> , we see that  

𝜇(𝜔 → ∞) = −
𝑒ଶ

𝑚௘
 

1

𝜔ଶ
𝐸(𝜔) ≈ 0 (5.15) 

We see that the dipole moment is in anti-phase with the driving field, and the dipole 
moment vanishes as the frequency increases. We have found that bound electrons do not 
produce much polarization at high frequency. This is the reason why materials become 
transparent at sufficiently high frequency: when illuminated at sufficiently high frequency, 
none of the electrons (neither the valence electrons or the core electrons) can respond 
significantly, and therefore there is little absorption or refraction. Indeed, sufficiently high 
energy X-Rays can propagate freely through most materials.   
 
We sometimes describe the ability to generate dipole moment with a quantity known as the 
polarizability . This links dipole moment and driving field according to  =  E, resulting 
in an expression for the Lorentz polarizability :  

𝛼(𝜔) =
𝑒ଶ

𝑚௘
 

1

𝜔଴
ଶ − 𝜔ଶ − 𝑖Γ𝜔

 (5.16) 

Note that here we assumed an isotropic response, which is reasonable for isolated atoms. 
If we describe the electronic polarization of molecules we often find that the polarization 
is not exactly aligned with the driving field, necessitating the use of a polarizability tensor, 
however in most of this book we will deal with isotropic responses that are described by a 
scalar polarizability. Be careful not to confuse the polarizability  with the absorption 
coefficient . 
 



 39

With our expression for dipole moment we can now easily derive an expression for 
polarization, or dipole moment per unit volume. With N atoms per unit volume, the net 
dipole moment per unit volume is 

𝑃ሬ⃗ (𝜔) = 𝑁𝜇(𝜔) = 𝑁𝛼(𝜔)𝐸(𝜔) (5.17) 

This assumes that the atoms respond isotropically. For isotropic mixes of anisotropic 
molecules one has to do orientational averaging, see for example Chapter 12 on the optical 
response of molecular liquids.  
 
With the Lorentz expression for polarization 𝑁𝛼(𝜔)𝐸(𝜔) with the relation 𝑃(𝜔) =
𝜖଴𝜒(𝜔)𝐸(𝜔) we have obtained an expression for the frequency dependent susceptibility:  

𝜒(𝜔) =
𝑁𝑒ଶ

𝑚௘𝜖଴
 

1

𝜔଴
ଶ − 𝜔ଶ − 𝑖Γ𝜔

 (5.18) 

Note that N in fact represents the ‘number of oscillators’, and in this case the number of 
electrons that contribute to the resonance of interest. For example, a single atom may have 
multiple valence electrons that contribute to a resonance. In this case, N becomes the 
number of atoms per unit volume, multiplied by the number of valence electrons per atom. 
Remember that atoms may have many more electrons, but that the dielectric response is 
often dominated by the outermost (valence) electrons since those are relatively weakly 
bound i.e. most easily polarizable. A possible exception is high-frequency illumination: 
when irradiating atoms at far-UV and x-ray frequencies, optical resonances related to 
excitation of strongly bound core electrons can be observed, however such transitions are 
not discussed in detail here.  
 
We have assumed local and macroscopic fields are equal, and have ignored spatial 
averaging - assumed all dipoles are free to point in direction of field. 

Note that  is dimensionless, so that the term 
ே௘మ

ఌబ௠
  has dimensions of 2.  We set    
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p
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2
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
  (5.19) 

For reasons that will become apparent later, p is known as the “plasma frequency”. We 
can split the Lorentz susceptibility into its real and imaginary parts:  
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 (5.20) 

See fig 3.1 in Wooten for plots of these quantities. 
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Resonance Approximation 

We can simplify these expressions near resonance, under the approximation |0 - | << 0. 
In this case, 0 +   2 0 , therefore 

         20
2
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2

00

222
0 2    (5.21) 

Hence, we see that in this “resonance approximation” we have 
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 is the Full width at half maximum (FWHM) of the imaginary part of , which has a 
“Lorentzian” functional form. 
 
Note the symmetry of the real & imaginary parts.  The imaginary part of the susceptibility, 
” is symmetric about 0, while  ’ is antisymmetric about 0.  Notice that in the  resonance 
approximation that ’ appears antisymmetric (i.e. about  = 0) while ” appears 
symmetric.  The converse is actually true, as seen before from the reality condition.  This 
highlights that the resonance approximation is strongly invalid far from resonance. 

Real Atoms & TRK Sum Rule 

In general, atoms & molecules have several resonances, not just a single one as in our 
model.  - Quantum mechanically, there are several resonances electronic resonances, and 
molecules may exhibit vibrational and rotational resonances also.  It turns out that 
perturbation methods in quantum mechanics yield a result very similar to the classical one.  
We find 
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22
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)(  (5.23) 

j is the frequency for a transition between two electronic states with energy difference 

j .  j is the decay rate for the final state and fj is known as the “oscillator strength”, 

which obeys the Thomas-Reich-Kuhn sum rule: 

 
j

j Zf  (5.24) 

for an atom with Z electrons.  This tells us that the total absorption, integrated over all 
frequencies is dependent only on Z.  Usually one resonance dominates all others.   
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Figure 5.2 

The “natural” linewidth is dictated by .  Recall   is a damping or decay rate, which 
corresponds to (1/lifetime) of a state.  This could range from kHz to GHz.  Often the 
electronic states are split into many sub states.  In molecules, each electronic state can exist 
for many possible vibrational or rotational states of the molecule. Which strongly broadens 
the electronic “states” into “bands”.   In solids, the electronic levels are broadened into very 
broad electronic energy bands.  All of these broaden out the optical resonances far in excess 
of . 
 
In addition to several electronic resonances, other degrees of freedom, such as atomic 
motions, including molecular vibrations, lattice vibrations, molecular rotations, can 
interact with the electromagnetic field, producing many resonances over the 
electromagnetic spectrum. This is illustrated in Wooten, Fig. 3.2. 
 
Our classical, or quantum, model gives the real and imaginary parts of the susceptibility, 
from which it is easy to obtain the dielectric function, r () = 1 +  ().   Here r =  / 0 is 
the relative permittivity.  It is less straightforward, but still not difficult to find expressions 
for  n() and ().  We start from:  
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From which we obtain 
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Armed with n and , we can find the absorption and reflectance of the material.  Wooten 
illustrates this in Figs. 3.3 and 3.4.  It is often illustrative to plot n, , absorption  and R 
for different values of 0, p and .  On the next page is an example, using values of 4, 8 
and 1, for each of these parameters, respectively.  - These seem like strange, unrealistic 
numbers to use, but our expression for  contains only frequencies, so the scale is relative.  
However, it is realistic to think of these numbers as photon energies,  , in electron volts 
(eV). 
 
Lorentz model  for 0 = 4,   p = 8,     = 1. 
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Figure 5.3 

Note the shapes of the curves are as we would expect from Kramers-Kronig relations. 
Also note that  drops below zero between 0 and p.  We can calculate n and  from the 
above relations.  n is small over the region where  is negative.  Above  p , n gradually 
rises to 1. Noting that  = 2 /c, we have also plotted a scaled version of  ,  by plotting 
2, scaled to p. Note how  is skewed to higher frequencies. R is large in the region 
where n is small, which makes sense, as in the limit of n0, R 1. 
 
Lorentz model  for 0 = 4,   p = 8,     = 0.3. 
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Figure 5.4 

As expected, for a smaller damping,   = 0.3, the curves are narrower and have larger 
maximum values. Above 0, n is well below unity.  Above p, n rises, but only in the high-
frequency limit does n approach unity.  This is a good predictor of actual materials.  - 
Above the highest frequency resonance, usually in the deep UV/soft x-ray region, n is 
indeed less than unity.  Causality is not violated, though.  Note that near p,  ~0 and hence  
n ~ . The reflectance is much higher and has sharper edges. Note the high R starts around 
0 and falls near  p.  This is because  >> n in the reflecting band. Note  is large above 
0 even where ” has dropped  to a small value. 
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T-A-R-T 

As described in Wooten, the material has four distinct regions of optical properties, 
 
Transmissive,    < 0 - /2,  
Absorptive,         0 - /2 <  < 0  
Reflective,          0 + /2 <  < p 
Transmissive   > p 

 

These frequency ranges are approximate.  The regions are more distinct for smaller  and 
larger p. 

Applicability of the Lorentz model to real materials 

(i) Insulators 

The Lorentz model works surprisingly well, provided we remember that real materials 
correspond to a collection of Lorentz oscillators with different frequencies. The outer, or 
valence, electrons predominantly determine the characteristics of the optical properties a 
solid.  In an ionically – bonded material, e.g. alkali-halides such as KCl, the valence 
electrons are quite strongly localized at the negative ion (for KCl, this would be the Cl 
atom), and hence the optical spectrum contains some atomic-like features, with many 
resonances. As the valence electrons are tightly bound, the resonance frequency is high so 
that these materials may have a transparency range that extends far into the UV. This can 
be seen in the reflectance spectrum for KCl shown below (taken from Wooten, Ch. 3.)  For 
these types of materials, the external field and the local field can be quite different and it 
is not trivial to calculate the local field.  For this reason, the Lorentz model does not give 
quantitatively accurate results for ionic materials.  
 

 
Figure 5.5 
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(ii) Doped Insulators 

Doped insulators, for example ions in glass, behave somewhat like the ions would in a gas, 
except that the locally strong electric fields of the host materials may distort the spectrum 
slightly. Figure 5.6 shows the absorption of Nd3+ ions in a glass host material. 

 
Figure 5.6 

Usually, the absorption of the dopant material is in a region of transparency of the host so 
that we can approximate the polarization as a superposition of polarizations due to the host 
and dopant material.  For the case of a single resonant absorption line, we may write 
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where host is assumed to be real and constant.  Hence; 
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Often, we label 1 + host as the “high frequency dielectric constant”,  , so that 
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The static dielectric constant, defined as st = r(0) is therefore given by setting  = 0 in the 
above expression, so that 
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Hence, the static dielectric function of a material is affected by dopants, even though the 
resonant frequency for the dopant is far away from  = 0. 
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The absorption cross-section 

When a material contains a small amount of distinct atoms or charges such as a small 
concentration of optically absorbing atoms or free charges, the absorption per atom (or 
charge) is often expressed in terms of an absorption cross-section. The absorption cross-
section abs is the physical cross-section of a perfectly absorbing disk that would produce 
the same absorption as the atom. The absorbed power by a single atom can thus be 
described by  

𝑃௔௕௦ = 𝜎௔௕௦𝐼 (5.31) 

with I the incident irradiance. When a transparent material is doped with a small 
concentration of N absorbing atoms per unit volume, there is a simple relation between the 
absorption coefficient and the absorption cross-section, given by  

𝛼 = 𝜎௔௕௦𝑁. (5.32) 

This relation can be easily understood under certain simplifying assumptions. A thin slab 
of the doped material with thickness z contains Nz absorbing atoms per square meter. 
Each of these atoms contributes an absorbing area of size abs. The total absorbing area in 
the thin slab is thus abs N z. The fraction of irradiance lost per distance z is thus abs N. 
Considering infinitesimally thin slice with thickness dz we can write this as a differential 
equation:  

𝑑𝐼

𝐼(𝑧)
= −𝜎௔௕௦𝑁𝑑𝑧  ⇒   

𝑑𝐼

𝑑𝑧
 =  −𝜎௔௕௦𝑁 𝐼(𝑧) . (5.33) 

The solution to this type of differential equation is 

𝐼(𝑧) = 𝐼଴ 𝑒ିఙೌ್ೞே௭. (5.34) 

We see that a concentration of N absorbers each with a physical size of abs leads to an 
exponential decay of the irradiance, described by an absorption coefficient 𝛼 = 𝜎௔௕௦𝑁.   
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Chapter 6 - Drude model of the optical properties of metals 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 

The dielectric function of the ideal free electron gas 

We can extend the Lorentz model to metals, in which case, since the electrons are unbound 
or "free", they experience zero restoring force and hence the resonance frequency, 0

2 = 
K/m is also zero.  This is known as the “Drude” model.  The equation of motion a free 
charge is  
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which has solution 
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We can again convert position to dipole moment by using 𝜇(𝜔) = −𝑒𝑟(𝜔) , convert this 
to 𝑃(𝜔) = 𝑁𝜇(𝜔), and compare it with 𝑃(𝜔) = 𝜖଴𝜒(𝜔)𝐸(𝜔) resulting in the following 
expression for ():  
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where once again the plasma frequency is defined by p
2 = Ne2/0m. Note that the answer 

is (as it should be) equal to the Lorentz susceptibility with 0=0.  Splitting this into real 
and imaginary parts we find 
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If we only consider a hypothetical collection of free charges (known as an ideal ‘free 
electron gas’) we obtain the following relative permittivity expressions:  
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Now, in a metal, the damping term  is just the electron collision rate, which is the inverse 
of the mean electron collision time, , i.e.  = -1.  Hence, 
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The collision rate can be quite rapid - tens of femtoseconds, corresponding to damping rate 
of the order of 1014 s-1.  But for optical frequencies, (e.g. for  = 500 nm,  = 2c/ = 
3.8x1015 rad/s) ()2 >> 1.  Under this approximation, we find 
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It is useful to look at some plots of r(), n(), () and R().  These are plotted below 
for p = 10 and for   0 or  = 0.5.  In the limit of no damping, the n = 0 and R =1 for 0 
<  < p.  Above p,  is zero and the reflectance drops as n rises from zero to unity.  Note 
that even for r” = 0,  and hence  is not zero.  Introducing some damping causes R to be 
< 1 and the reflectance drop at p is less severe.  The behavior of r, n and  is consistent 
with what we now expect for a Lorentz oscillator with 0 = 0.  
 
Clearly, the sharp edge in the reflectance seen at the plasma frequency can be expected to 
be the predominant spectral feature in the optical properties of metals. 
 

Figure 6.1 

Note that in real materials we have not only the free charges, but also the core electrons of 
the metal atoms. We thus expect the dielectric function of real metals to be a mix of the 
response of the bound (core) electrons and the free electrons. However for frequencies well 
below the plasma frequency, the free charge response typically dominates the dielectric 
function.  

Optical absorption in low electron density materials – Semiconductors 

Optoelectronic devices are typically made out of semiconductors with small concentrations 
of free charges. These free charges can introduce a small amount of absorption, known as 
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free carrier absorption. In the following we will derive the typical frequency dependence 
of free carrier absorption.  
 
The total dielectric function of such doped semiconductors is given by the dielectric 
function of the undoped semiconductor host 𝜀௛௢௦௧, plus a small Drude susceptibility 
contribution from the free charges. Assuming a fixed host dielectric constant this gives a 
total dielectric function of  

𝜀௥(𝜔) = 𝜀௛௢௦௧ + 𝜒஽௥௨ௗ௘ = 𝑛௛௢௦௧
ଶ −

𝜔௣
ଶ

𝜔ଶ + 𝑖Γ𝜔
  (5.35) 

The free charges change both the real part and the imaginary part of the dielectric function. 
Typically the free charge (or ‘free carrier’) concentration is quite low, resulting in a very 
low plasma frequency that lies in the infrared region. This means for many optical 
frequencies we satisfy 𝜔 ≫ 𝜔௣ . In this case the real part of the dielectric function of the 
semiconductor is not strongly affected by the free charges. In this case we find the 
approximate response  

𝜀௥൫𝜔 ≫ 𝜔௣൯ ≈ 𝑛௛௢௦௧
ଶ + ൬

Γ

𝜔
൰

𝜔௣
ଶ

𝜔ଶ + Γଶ
𝑖  (5.36) 

The added imaginary part can introduce significant absorption. The absorption coefficient 
is given by () = 2/c. We also know 2𝑛𝜅 = 𝜀௥′′. To use this relation we would need 
to calculate the real index of the doped semiconductor, but as argued above the real index 
is not changed significantly by the free charges. We can thus use 𝜅 ≈ 𝜀௥

ᇱᇱ/2𝑛௛௢௦௧. This 
allows us to write  
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where in the last step we have assumed that 𝜔 ≫ Γ, and with p the wavelength 
corresponding to the plasma frequency. The derived 2 dependence of  is commonly seen 
in semiconductors, where dopant densities are typically in the range of 1016 to 1019 cm-3 as 
compared to ~ 1022 cm-3 in metals. We can thus recognize free-carrier absorption in 
absorption spectra by noticing a quadratic rise in absorption as a function of wavelength 
below the semiconductor absorption edge (band gap).  

Significance of the plasma frequency 

The expressions have been written for r rather than for  as they more clearly reveal 
something significant about the plasma frequency in this form.  Notice that at  = p, the 
real part of the dielectric constant becomes zero.  Hence n(p) = 0 , which means the phase 
velocity - .  A more rational way to describe this is that the wavelength,  = 2c/n  
 as   p.  This means that all the electrons are oscillating in phase throughout the 
propagation length of the material.   
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Figure 6.2 

Note that as all the electrons are moving together, there is no charge separation 
(polarization) and hence no restoring force or sustained oscillation after the field is 
removed. 

Plasma oscillations 

The above figure shows an entirely transverse field (compared to the surfaces of the 
material).  Should there be a component of the field perpendicular to the surface, there can 
be a net surface charge as a result of the applied field. 
 

 
 
 

Figure 6.3 

The attractive (restoring) force between the surface charges can result in a free oscillation.  
 
For no net charge, (qf = 0) then D = 0 = 0rE.  But E 0, so then  
r = r’+ ir” =0.  Hence, r’=0.  Now, P = charge x displacement /volume. Thus 

.&
00 











xNeP
E

xNe
AL

LxNeA
P





 (6.8) 

Eapp

+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-E

cos(pt) 

metal 

x x 



 51

The restoring force is given by:  -eE: 
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xNe
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, (6.9) 

which is equal and opposite  to the acceleration:   
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which is the equation of motion:   
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Hence the resonance frequency for the plasma oscillation is given by  
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We have found that the plasma frequency has a physical meaning: it corresponds to the 
natural collective electron oscillation in a thin metal plate.  

Modifications of Drude theory in real metals 

The Drude model implies that the only the plasma frequency should dictate the appearance 
of metals. This works for many metals – see the example of Zinc (Fig. 3.12 in Wooten.) – 
But is does not explain why copper is red, gold is yellow and silver is colorless.  In fact the 
appearance of these metals is characterized by an edge in the reflectance spectrum, similar 
to that predicted by the Drude model, but the problem is that all three metals have the same 
number of valence electrons. Also, the calculated plasma frequency for all three should lie 
at about 9 eV, - well outside the visible region, so the plasma frequency cannot in itself 
account for the colors of Cu and Au.  
 
All three have filled d-shells.  Copper has the electronic configuration [Ar].3d10.4s1 , Silver 
[Kr].4d10.5s1 and Gold [Xe].4f14.5d10.6s1.  (These metals are known as the “Noble 
Metals”.)  The d-electron bands lie below the Fermi energy of the conduction band: 
Transitions from the d-band to the empty states above the Fermi level can be occur over a 
fairly narrow band of energies, around dF EE 0 which can be modeled as additional 

Lorentz oscillator.  The combined effects of the free-electrons (Drude model) and the 
interband transitions due to bound d-electrons (Lorentz model) influence the reflectance 
properties of the metal. 
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Figure 6.4 

Hence,   r = 1+ free + bound.  Where f  is described by the Drude model (0 = 0), and b 

is described by the Lorentz model. (0 = [EF – Ed]/.) 

Examples:  silver, copper, and indium-tin-oxide (ITO) 

Silver 

The reflectance spectrum of silver shows a strong drop at about 4 eV, well below the 
expected plasma frequency.  The reflectance also rises again for frequencies just above 4 
eV.  (See Wooten, Fig. 3.15, shown below.) 
 
It turns out that this behavior is because Silver has a d-band resonance at  4 eV.  This 
can be determined from experimental data by fitting the Drude model to the low frequency 
data, as shown in Wooten, Fig. 3.18.(Shown below.)  The difference between dielectric 
functions from Drude model and from experiment gives the dielectric function due to the 
d-band resonance, bound  (written as (b) in Wooten.)  The effect is to “pull” the r’ = 0 
frequency in from 9 eV to about 3.9 eV 

Fermi energy

D-band

Conduction band

E

ke

EF 
 
Ed 
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Figure 6.5 Real part of dielectric constant for Silver (from Wooten, Fig 3.18) 

This shift in p means that there is a shift in the free plasma oscillation in silver due to the 
d-electrons. This can be explained by noting that the highly polarizable d-electrons will 
reduce the electric field that provides the restoring force involved in these oscillations, 
illustrated on page 6.  A reduced restoring force gives a reduced oscillation frequency.  See 
Wooten fig. 3.20 for an illustration of how the d-electrons do this. 

Copper 

The case of copper is almost identical to that of silver, except that the d-band resonance is 
at about 2 eV.  Now since ’free becomes very large and negative at low frequencies, it turns 
out that ’bound due to the d-electrons is not sufficient to pull the net  through zero.  Hence 
’ becomes small at about 2 eV, but there is no true plasma frequency there.  However, the 
effect of this is sufficient to cause R to start to drop at 2 eV, but the reduction is gradual 
throughout the visible.  This gives copper its characteristic red-orange appearance. 
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Figure 6.6 (a) Dielectric function of Cu (Wooten, Fig 3.22) (b) Reflectance of Cu (Wooten 3.21) 

Tin-doped Indium Oxide  (ITO) - a transparent conductor  

ITO is a semiconducting material that gives quite high electrical conductivity, yet is 
transparent in the visible.  It is particularly useful in low-current applications, such as liquid 
crystal displays.  This is achieved by having a material with low electron density, but those 
electrons should be highly mobile, which means they travel through the material with 
relatively few collisions.  By choosing the right density of tin doping, ITO can be highly 
effective. Below, we show the real and imaginary part of  for ITO from a paper by 
Hamberg and Granqvist, Journal of Applied Physics, Volume 60, Issue 11, 1986, Pages 
R123-R159.  The plasma frequency, dependent of the Sn density, is typically around 0.7 
eV, which corresponds to  ~1.7m.  Due to this, and the free carrier absorption described 
above, ITO is not as useful in the near infrared ( > 1 m) as it is in the visible. 
 

     
Figure 6.7 from Hamberg and Granqvist, Model (right) from David Tanner, University of Florida 
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A more recent study by D. Tanner et. al. at the University of Florida, shows that the 
properties of ITO can be well modeled by the combination of Drude and Lorentz models.  
Using a model for r that sums contributions from the Drude model to describe the free-
carriers, and from the Lorentz model to describe bound carriers, which have a resonant 
absorption at    = 40,000 cm-1  ( c//1   ) or = 250 nm. i.e.  
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where  is a background high-frequency dielectric constant, and subscripts, b and f, 
correspond to bound and free electrons (i.e. Drude and Lorentz contributions, respectively.  
The plasma frequencies and damping times for the bound and free electrons are of course 
different.  The results of their model is shown below.  (Courtesy, David Tanner, University 
of Florida.) 

 

Drude conductivity and skin depth 

We already took a look at how the conductivity affects the optical properties in a homework 
exercise. There we looked mainly at the effect when the free-carrier contribution to the 
susceptibility is weak.  Since we are mainly considering metals, we will not look at the 
effect of charges in the case of good conductors, where the free carrier effects are large. 
 
Recall that the Drude model gave us 
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from which we can find the optical constants, n and  from 
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We can also describe the optical properties of a free-electron conductor in terms of the 
conductivity, which can also be determined by the Drude model. 
 
First, we note that the current density is related to the velocity of motion by 
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and the current is also related to the electric field by, )()(  Ej
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Now we already wrote down to equation of motion for electrons in an electric field as 
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and noting that 
dt

rd


v , we can rewrite the equation of motion for the velocity: 
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Now,   = 1/,  so that the solution for v is 
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or, 

)()(

)(
1

1
)()(

2








E

E
im

Ne
vNej








. (6.20) 
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is the Drude conductivity.  Setting,  mNe /2
0   , we have, 
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Where 0 is the DC conductivity. 
 
Inserting the conductivity into Maxwell’s equations for a medium with free charge carriers 
we find that we can write 
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If we assume that only free carriers contribute to the optical properties, then this becomes, 
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we can separate r into its real and imaginary parts to get 
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which is exactly as we obtained before.  So now we can estimate the optical properties of 
a metal based on the DC conductivity, as an alternative to requiring knowledge of the 
electron density. 
 
We will now look at the low-frequency limit of a good conductor.  A said before, typically, 
 ~ 10’s of femtoseconds, so that if we are looking at low frequencies (far infrared or 
microwaves or longer wavelengths) then  << -1 or  << 1.  In this case, 
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Hence, '" rr   , so that , 
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Hence, the complex refractive index under these conditions may be written as 
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The absorption coefficient is then given by, 
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Now, the irradiance depends on propagation depth, z, as 
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which could be written as 
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where () = 1/() is a penetration depth, at which point the irradiance drops to 1/e or 
0.36 of its incident value.  Since this depth is usually very small in metals, it is referred to 
as the “skin depth”, which is then given by 

002

1
)(


  . (6.33) 

Bear in mind the approximation ( << 1) under which this result was obtained.  For higher 
(mid – infrared, visible, UV) frequencies, this is no longer valid, and we just have to include 



 58

the whole expression for r.  Additionally, it was assumed that there are no other 
contributions to r, which is not exactly true because of bound electron resonances (i.e. 
transitions) at higher frequencies.  Should it be necessary, these can also be included in our 
models. 
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Chapter 7 – Optical Activity and Magneto-Optics 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
In Chapter 3 we derived a scalar wave equation to describe light propagation. We assumed 
isotropic electric response, and ignored any magnetization effects. In the first part of the 
present Chapter we will see that an oscillating electric field can induce an oscillating 
magnetic moment in some molecules. This will require us to consider a vectorial wave 
equation. This effect will lead to the phenomenon of optical activity, the ability of 
molecules to gradually rotate linear polarization. In the second part of the Chapter we will 
see that the application of an external magnetic field along the wave propagation will 
introduce an additional transverse force on the oscillating bound electrons. This leads to a 
phenomenon known as Faraday rotation, the magnetically controlled gradual rotation of 
linear polarization, enabling nonreciprocal optical systems.  

Optical Activity 

In some isotropic media, (e.g. sugar solution in water) it is found that the polarization of 
linearly polarized light is rotated in proportion to the propagation distance. 
 

 
Figure 7.1 

i.e.     zyzxEE in  sinˆcosˆ


,  

 
where  is the rotatory coefficient (/m or rad/m). The effect typically occurs in liquids 
solutions of chiral molecules, a special class of molecules that is not mirror-symmetric. 
W.T. Kelvin defined chirality as “any geometrical figure, or group of points, if its image 
in a plane mirror cannot be brought to coincide with itself.”  
 
A simple example of a chiral molecule is shown below:xv  
 

        
 
 

                                                 
xv In this example the choice on calling either of the two configurations is arbitrary. For real molecules the 
choice of right vs. left-handed is linked to the sign of the rotatory coefficient. 

ẑ

x̂

ŷ ẑ

x̂

ŷ

E


E


“Left handed” “Right handed” 
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Note that the left molecule contains four different atom types. It is not possible to rotate 
the left molecule to make it overlap with the right molecule.   
 
For each chiral molecule there exists a left-handed and a right-handed isomer. These 
special isomers are called enantiomers.  While they have the same composition (same atom 
types, same number of bonds), they may interact differently with left and right handed 
enantiomers of other molecules. This is particularly important in biology.  For example, 
orange peel and lemon peel contain opposite enantiomers of the molecule limonene.  These 
are responsible for the smell of the fruit. d-limonene smells of orange, l-limonene smells 
of lemon. The letter ‘d’ comes from the Latin word dexter for ‘right’, and the letter ‘l’ 
comes from the Latin word laevus meaning ‘left’.  

 
 

 
Figure 7.2 

Common table sugar is sucrose, which is a combination of glucose (dextrose - right-handed 
sugar) and fructose (levulose - left-handed sugar).  The dextrose molecule is shown below: 

 
Figure 7.3 

 

Link between chirality and optical rotation 

An extreme case of a chiral molecule would be a molecule shaped like a helix (‘coil’). For 
simplicity, let’s imagine that valence electrons can move freely along the molecule. In the 
figure below, we see that an electric field would drive charge motion along the helical 
molecule. The resulting curved charge motion is accompanied by a magnetic response, in 
the same way that an electromagnet uses current to generate a magnetic field. A helical 
molecule (and a chiral molecule in general) can thus produce a magnetic field along the 

d-limonene (orange) l-limonene (lemon)d-limonene (orange) l-limonene (lemon)
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direction of the electric field. Such an effect was not considered in the derivation of the 
scalar wave equation. In the following we will reconsider the wave equation, but this time 
taking into account the possible influence of chiral molecules.  
 

 
Figure 7.4 

Note that if the molecule were flipped by 180, the effect would be the same. The is a 
crucial observation, as it explains why the effect does not average to zero inside isotropic 
media. A solution of chiral molecules will be isotropic, since it contains randomly oriented 
molecules. The optical activity is caused by the subset of molecules that are either aligned 
‘along or against’ the electric field, while some molecules may contribute less because they 
are not ideally aligned.  
 
When optical activity (the ability to rotate linear polarization) is observed in solutions of 
molecules, we expect that the amount of polarization rotation is dependent on the 
concentration of molecules. To describe concentration dependent optical activity, we use 
the specific rotatory power or specific rotation s. It is defined as the amount of 
polarization rotation per unit length, per concentration. For a specific rotation given in units 
degrees cm2/g the polarization rotation angle  after a distance z is thus given by:  

𝜃(𝑧) [°] = 𝑧[𝑐𝑚] ⋅ Δ௦ ቈ°
𝑐𝑚ଶ

𝑔
቉ ⋅ 𝐶 ቂ

𝑔

𝑐𝑚ଷቃ   

Other common units used for specific rotation are  degrees (or radians) per 10 cm / (g/liter), 
i.e. with all length units described in units of 10 cm.   
 

Describing optical activity with the vectorial wave equation 

As mentioned above, optical activity is caused by electrically induced magnetic moment 
on molecules, with an magnetic average contribution oriented along the electric field. To 
find this effect from Maxwell’s equations, we need to consider the M


  contribution to 

the current.   
 

Recall,    MHB


 0 , and 
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P
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E
MJB

 
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
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for isotropic media and Jf = 0.  Hence. 
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So there is a term due to the curl of the magnetization that looks like a contribution to the 
polarization.  Taking the Fourier transform, we get 
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now we can compare magnitudes on the right hand side: 

cP

M

P

kM

P

Mk
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

 (7.7) 

In most cases, this ratio << 1  (see homework), so that if Mk


  is parallel or antiparallel to 
P, we can ignore it. This corresponds to M being parallel to B, as shown below.  This case 
is not interesting, as /Mk


  is very small compared to P. (Note that we have assumed 

isotropic media, so that E and P are always parallel.) 

 
Figure 7.5 

However, if  M is parallel to P, then Mk


  is perpendicular to P, as shown below: 
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k


B
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Figure 7.6 

Hence the effective polarization, MkPPeff





1 , has a small component 

perpendicular to the applied field.  This is what leads to the rotation of the electric field. 
 

Propagation equations for optically active media 

Now HM M


 

~~ , where 
M

~~  is the magnetic susceptibility tensor. 
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and since the medium is isotropic, 
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Since M


 is parallel to E


, we may treat it as a scalar when relating M and E.  Hence we 
may write M as a scalar: 
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- we will take the direction of k as z.  Hence we will write zk ˆˆ  . 
 
The wave equation therefore becomes 
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Equating x and y components of the wave equation gives 
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So for a nontrivial solution, the determinant must be zero: 
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Hence for an eigenmode of the wave equation we have 
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But recall that 
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so that plane wave modes k satisfy 

yx iEE   (7.18) 

Hence an eigenmode of an isotropic chiral medium is one where ex and Ey are equal and 
/2 out of phase.  – i.e. circular polarization.  So we can write the eigenmode as 

  0ˆˆ
2

1
EyixE  

, (7.19) 

where E0 is the field amplitude and the + and – case correspond to left-circularly polarized 
light (LCP) and right-circularly polarized light (RCP) respectively.  These modes have 
wavevectors: 
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but M << 1, so, 
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Hence the RCP and LCP waves experience different refractive indices: 

 2/1 Minn  . (7.22) 

Now, at this point, it appears that the M component of the index is going to give rise to 
loss, as it appears to give an imaginary component to n.  However, we should recall that 
while the electric polarization is proportional to the displacement, r, of charge, i.e. p  er, 
the magnetic polarization is proportional to the current, i.e. erirem   .  Hence for p 
real (r real), the induced magnetic dipole is purely imaginary.  Therefore  
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This gives purely real refractive indices: 
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So we now clearly see that the RCP and LCP eigenmodes propagate at different speeds.  
To deal with linear polarizations, we use the fact that a linearly polarized wave can be 
written as a sum of equal amplitude RCP and LCP components: 
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From this, we can see that  gives the rotation of the linear polarization per unit length.  
Hence  is termed the “rotatory power”, given by 
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Zeeman Splitting 

Here we are interested in the effect of an external magnetic field, B, on the optical 
properties of a medium.  (This is somewhat similar to the case of chiral media, except here 
the “chirality” is imposed by an external magnetic field.)  The general term for the use of 
magnetic fields to modify optical properties is “Magneto-Optics” 
 
In general for a medium exposed to an external magnetic field, B: 
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where FZ
ijk

, describes the linear magneto-optic effects known as the Zeeman and Faraday 

effects. Here, we will consider an isotropic material, so that ij is scalar.  We also let B be 

oriented along the direction of propagation, i.e.  zBB ˆ


.  Hence the force on an electron 
in the medium is given by the Lorentz force law: 
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For a plane wave propagating along z,  0,, yx EEE 


, so we have 2 equations of motion 

for a bound electron in the field: 
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Since the medium is isotropic, then x = y = 0.   
 
Now, a free electron with velocity v perpendicular to a magnetic field will make circular 
orbits around the z-axis, as shown in the figure below.  Hence free electrons in a magnetic 
field would have a resonant absorption at the cyclotron resonance frequency of c = eB/m, 
(also known as the “Larmor Precession frequency”).  In our case, we have bound electrons, 
so we might expect that the bound electron resonance is modified by the cyclotron 
resonance. 
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Figure 7.7 

Now, for electric field components defined by 
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we anticipate the x and y components of the electron motion to be 
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Therefore the equations of motion become 
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For convenience, we write D() = (o
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Anticipating circular motion in our solutions, we define an amplitude, Q, corresponding to 
such motions: 
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 (7.38) 

Hence Q corresponds to the amplitude of electron motion for illumination with right (+) 
and left (-) circularly polarized light.  Note that B = 0 yields the regular result from the 
Lorentz model. 
 
The resonance frequencies occur for 0

2 - 2  eB/m = 0, which, under the resonance 
approximation, becomes 2(0 - )  eB/m  0, giving resonance frequencies for the two 
states of circularly polarized light as 
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This is known as “Zeeman splitting” 
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Figure 7.8 
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Faraday Rotation 

While the Zeeman effect gives the splitting of the absorption lines for left and right circular 
polarizations due to the magnetic field, the Faraday effect is the rotation of polarization far 
from resonance due to the consequent slight difference in refractive indices for the two 
polarization states. 
 

 
Figure 7.9 

To analyze this, we take the far from resonance approximation: 
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For mBe /22
0   , we can expand to first order: 
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Now,   
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Hence the susceptibility becomes 
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where  

 222
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cmn

Ne
V        (7.44) 

is the Verdet coefficient. 
 
The refractive index for left and right circularly polarized light may hence be written as 

B
Vc

nn

B
Vc

nn

B
nVc

n
























2

2
)(1

2

0
2

 (7.45) 

Hence left and right circularly polarized waves see different refractive indices, which again 
leads to rotation of linear polarization, i.e., 

     cctzkiEVBzyVBzxtzET .expsinˆcosˆ
2

1
),( 0  


 (7.46) 

Highly dispersive materials will have large Verdet coefficients.  In practice, the magnetic 
susceptibility will also determine how large a Verdet coefficient of a material will be.  – 
Paramagnetic and diamagnetic materials would actually have Verdet coefficients of 
different sign.  Full understanding of the Zeeman effect requires a quantum mechanical 
analysis.  Note that the sign of B gives the sign of rotation of polarization.  Compare this 
to the case of optical activity where there is no applied field and since the material is 
isotropic, the sign of rotation is intrinsic to the material, depending only on the sign of M. 
 

 
Figure 7.10 Faraday Cell 
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Chapter 8 – Nonlinear Optical materials 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
For very high irradiance beams, the electric field is large enough that the polarization 
response, usually written as 

𝑃(𝜔) = 𝜀଴𝜒(𝜔)𝜀(𝜔)  (8.1) 

is no longer linearly dependent on the field strength. This is because the electron 
displacements from equilibrium are so large that Hooke’s law, F = -Kx, is no longer exactly 
true. To examine the effect of a nonlinear restoring force, we expand the polarization into 
a power series in E:  

𝑃(𝐸) = 𝑃(ଵ) + 𝑃(ଶ) + 𝑃(ଷ) +  … = 𝜀଴ൣ𝜒(ଵ)𝐸 + 𝜒(ଶ)𝐸ଶ + 𝜒(ଷ)𝐸ଷ + ⋯ ൧ (8.2) 

Note that we have omitted frequency arguments for simplicity here. In general, new 
frequencies are generated, so we will deal with the appropriate frequencies on a case-by-
case basis.  

Anharmonic oscillator model 

While there is no simple general answer to the polarization response of an anharmonic 
oscillator, we can find an approximate response starting from Hooke’s law, and adding the 
nonlinear response as a small perturbation. Hooke’s law (F = -Kx) corresponds to a purely 
parabolic or ‘harmonic’ binding potential:  

𝑉(𝑥) = −∫ 𝐹𝑑𝑥 =
ଵ

ଶ
𝐾𝑥ଶ =

ଵ

ଶ
𝑚𝜔଴

ଶ𝑥ଶ (8.3) 

Note that V(x) here represents the position dependent potential energy of the electron in 
joules, not the electric potential in volts. The parabolic description is a good approximation 
for small deviations from equilibrium, but the binding potential cannot remain parabolic 
for all values of x. A more realistic potential may be obtained from a power series 
representation:  

𝑉(𝑥) =
ଵ

ଶ
𝑚𝜔଴

ଶ𝑥ଶ +
ଵ

ଷ
𝑚𝑎𝑥ଷ +

ଵ

ସ
𝑚𝑏𝑥ସ +  … (8.4) 

where a and b are anharmonicity coefficients. The “modified Hooke’s law” now becomes 

𝐹(𝑥) = −
ௗ௏

ௗ௫
= −𝑚𝜔଴

ଶ𝑥 − 𝑚𝑎𝑥ଶ − 𝑚𝑏𝑥ଷ −  … (8.5) 

The magnitude of the anharmonicity coefficients depends – among other things – on the 
symmetry of the material.  For a centrosymmetric medium, V(x)=V(-x), we have only 
even-order terms:  

𝑉(𝑥) =
ଵ

ଶ
𝑚𝜔଴

ଶ𝑥ଶ +
ଵ

ସ
𝑚 𝑏𝑥ସ + ⋯  

𝐹(𝑥) = −𝑚𝜔଴
ଶ𝑥 − 𝑚𝑏𝑥ଷ − ⋯ (8.6) 
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Non-centrosymmetric potential   Centrosymmetric potential 
 
For each type of material, we will consider only the lowest anharmonic terms, since those 
tend to dominate over the higher order terms.  

Non-centrosymmetric materials – SHG and optical rectification 

We will solve the equation of motion for x(t) and hence for P(t) using a simple perturbation 
method. First, we will consider non-centrosymmetric media, with only the lowest order 
anharmonic term:  

ௗమ௫

ௗ௧మ + 𝛾
ௗ௫

ௗ௧
+ 𝜔଴

ଶ𝑥 + 𝑎𝑥ଶ = −
௘

௠
𝐸(𝑡) (8.7) 

To solve this equation, we treat the ax2 term as a small perturbation. If ax2 is small, under 
excitation with a harmonic driving field E(t) the electron oscillation x(t) will also be 
predominantly harmonic (‘sinusoidal’). This sinusoidal component of the electron motion 
will be called x(1)(t) where the superscript (1) indicates that this represents the first order 
(linear) response. In the following we’ll first have a qualitative look at the effect of the 
term ax2 on the response.  
 
From the equation above we see that there will be a small extra force 𝑎 ⋅ 𝑥(𝑡)ଶ on the 
electron. In the presence of a sinusoidal driving field E(t) the motion is also approximately 
sinusoidal, i.e. x(t)  x(1)(t). This means that our extra force will scale approximately with 
[x(1)(t)]2 and thus approximately with E(t)2. For harmonic excitation we thus observe extra 
forces of the form sin2(t) = ½(1-cos(2t)). This immediately suggests that for materials 
with a finite anharmonicity coefficient a, a large linear response (large-amplitude 
sinusoidal motion) will introduce a small contribution to the electron motion at zero 
frequency due to the term ‘1’ in the argument above, and a small contribution at twice the 
frequency of the driving field due to the term cos(2t) from above. The generation of these 
two terms are called optical rectification and second harmonic generation respectively. 
 
The fact that the [x(1)(t)]2 term is proportional to 1-cos(2t) tells us that the strength of the 
extra restoring force at both these new frequencies will be equal. The actual induced 
additional electron response resulting from these extra force contributions will depend on 
the response of the atom to these new driving forces, i.e. on the linear equation of motion.  
 
We have found that the coefficient a can lead to new force (compared to Hooke’s Law) 
and therefore a contribution to the electron oscillation that scales with [x(1)(t)]2 and thus 
with E(t)2. The resulting displacement x with the same functional form as E(t)2 will be 
called the second order displacement x(2) with a corresponding second order polarization 
P(2). Both x(2) and P(2) can contain terms with different frequencies (in this example zero 
frequency and the second harmonic). In order to describe the resulting polarization P(2) in 
terms of E2 we will need an expression for the second order susceptibility (2) that specifies 
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the magnitude and phase of the polarization response at each of the new frequencies, 
denoted (2)(0) and (2)(2).  
 
The arguments above state that the anharmonic oscillator model will yield a polarization 
response that looks almost exactly like the linear response P(1), but that will contain a small 
(multi-frequency) contribution denoted P(2) that scales with E(t)2 as a result of the 
anharmonicity parameter a. A similar analysis involving anharmonicity parameter b shows 
that the polarization will also contain a third order polarization contribution P(3) that is 
proportional to x(t)3 and thus approximately to [x(1)]3 and to E(t)3. The total polarization 
can thus be described by an equation of the form 

𝑃(𝐸) = 𝑃(ଵ) + 𝑃(ଶ) + 𝑃(ଷ) +  …  
 

          = 𝜀଴ൣ𝜒(ଵ)𝐸 + 𝜒(ଶ)𝐸ଶ + 𝜒(ଷ)𝐸ଷ + ⋯ ൧ (8.8) 

Note that the analysis above can also be used when E(t) contains multiple frequencies (e.g. 
two laser beams) but first we will investigate the case of a single driving frequency.  
 
To find the second order motion amplitudes x(2)(0) and x(2)(2) and the corresponding 
expressions for (2)(0) and (2)(2), we need to solve the nonlinear equations of motion. To 
derive the nonlinear equations of motion, we will set the driving field to be E(t) with 
<<1. Note  is a scaling parameter, not the wavelength. We look for motion amplitudes 
x(i) that scale with  according to  

𝑥(𝑡) = 𝜆𝑥(ଵ)(𝑡) + 𝜆ଶ𝑥(ଶ)(𝑡) + 𝜆ଷ𝑥(ଷ)(𝑡) + ⋯  (8.9) 

Substituting this into the nonlinear equation of motion (Eq. 8.7) results in terms 
proportional to , 2, 3, etc. Solving separately for only those terms that scale linearly with 
 gives an equation of motion proportional to  describing a linear response to the driving 
field:  

           𝜆ଵ   ∶      𝑥̈(ଵ) + 𝛾𝑥̇(ଵ) + 𝜔଴
ଶ𝑥(ଵ) = −

௘

௠
𝐸(𝑡) . (8.10) 

Solving Separately for only those terms that scale with 2 yields a second order equation 
of motion:  
 

𝜆ଶ   ∶      𝑥̈(ଶ) + 𝛾𝑥̇(ଶ) + 𝜔଴
ଶ𝑥(ଶ) = −𝑎൫𝑥(ଵ)(𝑡)൯

ଶ
 (8.11) 

Note that if a=0, this second order equation has no driving term, resulting in only one 
solution: x=0, indicating that no nonlinear contribution to the electron motion occurs.  
 
To solve for the response for finite values of a, we first solve the first order equation of 
motion, which will give us the linear response. If we take a harmonic driving field:  

𝐸(𝑡) =
ଵ

ଶ
𝐸ଵ(𝜔ଵ)𝑒ି௜ఠభ௧ + 𝑐. 𝑐. (8.12) 

the first order equation yields 

𝑥(ଵ)(𝜔) = −
௘

௠
 

ாభ(ఠభ)

ఠబ
మିఠమି௜ఠఊ

 (8.13) 

which gives the first order macroscopic polarization:  
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𝑃(ଵ)(𝜔) = −𝑁𝑒𝑥(ଵ)(𝜔ଵ) =
ே௘మ

௠
 

ாభ(ఠభ)

ఠబ
మିఠభ

మି௜ఠభఊ
 (8.14) 

Realizing that  

𝑃(ଵ)(𝜔) = 𝜀଴𝜒(ଵ)(𝜔)𝐸(𝜔)  (8.15) 

we have found that  

𝜒(ଵ)(𝜔) =
ே௘మ

ఌబ௠
 

ଵ

ఠబ
మିఠమି௜ఠఊ

 (8.16) 

This is simply the Lorentz susceptibility, as expected for a system with a linear restoring 
force. We will simplify the notation in the following substantially by defining a function 
that represents the resonance term in the denominator:  

𝐷(𝜔) = 𝜔଴
ଶ − 𝜔ଶ − 𝑖𝜔𝛾 (8.17) 

which allows us to write the linear susceptibility of our nonlinear material as  

𝜒(ଵ)(𝜔) =
ఠ೛

మ

஽(ఠ)
 (8.18) 

as we found before using the (linear) Lorentz model.  
 
With the obtained linear response we now have an approximate description of the driving 
term in the second order equation of motion:  

𝑥̈(ଶ) + 𝛾𝑥̇(ଶ) + 𝜔଴
ଶ𝑥(ଶ) = −𝑎 ቀ𝑥(ଵ)(𝑡)ቁ

ଶ
  . (8.19) 

This assumes that x(t) looks approximately like the first order response only, which is only 
reasonable when the nonlinear contribution is small. Based on the expression for x(1)(t)  

𝑥(ଵ)(𝑡) =  
ଵ

ଶ
 𝑥(ଵ)(𝜔ଵ)𝑒ି௜ఠభ௧   +   

ଵ

ଶ
 𝑥(ଵ)(−𝜔ଵ)𝑒௜ఠభ௧ (8.20) 

we find that  

ቀ𝑥(ଵ)(𝑡)ቁ
ଶ

=
ଵ

ସ
ቀ𝑥(ଵ)(𝜔ଵ)ቁ

ଶ
𝑒ିଶ௜ఠభ௧ + 𝑐. 𝑐.  +

ଵ

ଶ
ห𝑥(ଵ)(𝜔ଵ)ห

ଶ
 (8.21) 

We see that this term introduces a force that contains a frequency component  21 and a 
zero frequency component.  Consequently the second order displacement x(2) will also 
contain amplitude at these new frequencies. We can describe our second order motion at 
this double frequency as 

𝑥(ଶ)(𝑡) =  
ଵ

ଶ
 𝑥(ଶ)(2𝜔ଵ)𝑒ି௜ଶఠభ௧  +   𝑐. 𝑐. (8.22) 

Substituting the first term into the second order equation of motion gives  

−(2𝜔ଵ)ଶ ଵ

ଶ
 𝑥(ଶ)(2𝜔ଵ)𝑒ି௜ଶఠభ௧ − 𝑖2𝜔ଵ𝛾

ଵ

ଶ
 𝑥(ଶ)(2𝜔ଵ)𝑒ି௜ଶఠభ௧ +

𝜔଴
ଶ ଵ

ଶ
 𝑥(ଶ)(2𝜔ଵ)𝑒ି௜ଶఠభ௧ = −

௔

ସ
ቀ𝑥(ଵ)(𝜔ଵ)ቁ

ଶ
𝑒ିଶ௜ఠభ௧ (8.23) 

which together with  

𝑥(ଵ)(𝜔) = − ቀ
௘

௠
ቁ

ாభ(ఠభ)

஽(ఠభ)
 (8.24) 
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leads to:  (note: here we lose a factor 2. Perhaps in definition of E1 vs. ½ E1+c.c.?) 

[−(2𝜔ଵ)ଶ − 𝑖𝛾(2𝜔ଵ) + 𝜔଴
ଶ] 𝑥(ଶ)(2𝜔ଵ) = −

௔

ସ
ቀ

௘

௠
ቁ

ଶ ൫ாభ(ఠభ)൯
మ

[஽(ఠభ)]మ   (8.25) 

The left term between the square brackets is in fact D(21). Dividing left and right side by 
D(21) produces an expression for the second order contribution to the electron amplitude 
at the second harmonic frequency 2:  

𝑥(ଶ)(2𝜔ଵ) =  −
௔

ସ
ቀ

௘

௠
ቁ

ଶ ൫ாభ(ఠభ)൯
మ

஽(ଶఠభ)[஽(ఠభ)]మ (8.26) 

Note that the amplitude of the oscillation at 21 is large for excitation at 1=0 and for 
excitation at 21=0. 
 
Now we can derive the second order polarization from our expansion 

𝑃 = 𝑃(ଵ) + 𝑃(ଶ) + ⋯ (8.27) 

using our obtained second order contribution to the electron position:  

                      𝑃(ଶ)(2𝜔ଵ) = 𝜀଴𝜒(ଶ)(2𝜔ଵ; 𝜔ଵ, 𝜔ଵ)𝐸ଶ(𝜔ଵ) = −𝑁𝑒𝑥(ଶ)(2𝜔ଵ)  (8.28)  

Substituting the expression for x(2)(21) gives  

𝜀଴𝜒(ଶ)(2𝜔ଵ; 𝜔ଵ, 𝜔ଵ)𝐸ଶ(𝜔) =  
௔ே௘

ସ
ቀ

௘

௠
ቁ

ଶ ாభ
మ

஽(ଶఠభ)[஽(ఠభ)]మ  

                         ⇒ 𝜒(ଶ)(2𝜔ଵ; 𝜔ଵ,  𝜔ଵ) =
௔

ସ
ቀ

௘

௠
ቁ

ఠ೛
మ  

஽(ଶఠభ)஽(ఠభ)஽(ఠభ)
 (8.29) 

This is the component of the second order susceptibility that describes the second order 
polarization and therefore the second harmonic generation in a non-centrosymmetric 
medium (a0) under illumination with a single-frequency wave at . We will discuss later 
how this leads to the generation of a second harmonic wave that can grow to be quite large.  
 
In addition to second harmonic generation, we see that there is also a zero frequency 
component to P(2). Solving for the zero frequency part of  (x(2)(t))2  i.e. x(2)(0) we have  

(0 + 0 + 𝜔଴
ଶ)𝑥(ଶ)(0) = −

𝑎

2
ห𝑥(ଵ)(𝜔ଵ)ห

ଶ
 

𝑥(ଶ)(0) = −
𝑎

2𝜔଴
ଶ ቀ

𝑒

𝑚
ቁ

ଶ 𝐸ଵ𝐸ଵ
∗

𝐷(𝜔ଵ)𝐷∗(𝜔ଵ)
  

= −
𝑎𝑒ଶ

2𝑚ଶ

|𝐸ଵ|ଶ

𝐷(0)𝐷(𝜔ଵ)𝐷∗(𝜔ଵ)
 

 (8.30) 

Where we have used 

𝐷(0) = (𝜔଴
ଶ − 0ଶ − 𝑖𝛾0) = 𝜔଴

ଶ    and  𝐷∗(𝜔ଵ) = 𝐷(−𝜔ଵ) (8.31) 

Defining  

𝑃(ଶ)(0) = 𝜀଴𝜒(ଶ)(0; 𝜔ଵ, −𝜔ଵ) ⋅ 2𝐸ଵ𝐸ଵ
∗ (8.32) 
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we find 

𝜒(ଶ)(0; 𝜔ଵ, −𝜔ଵ) =
௔

ସ
ቀ

௘

௠
ቁ

ఠ೛
మ

஽(଴)஽(ఠభ)஽(ିఠభ)
 (8.33) 

Non-centrosymmetric materials – SFG and DFG 

In the above we have seen that a single input frequency can give rise to second harmonic 
generation and to optical rectification. When using multiple driving frequencies (e.g. 
illuminating a material with two different laser beams) we find a more general solution. If 
we take such a driving field  

𝐸(𝑡) =
ଵ

ଶ
𝐸ଵ𝑒ି௜ఠభ௧ +

ଵ

ଶ
𝐸ଶ𝑒ି௜ఠమ௧ + 𝑐. 𝑐. (8.34) 

then (x(1)(t))2  becomes 

ቀ𝑥(ଵ)(𝑡)ቁ
ଶ

=
1

4
ቀ𝑥(ଵ)(𝜔ଵ)ቁ

ଶ
 𝑒ିଶ௜ఠభ௧ +

1

4
ቀ𝑥(ଵ)(𝜔ଶ)ቁ

ଶ
 𝑒ିଶ௜ఠమ௧ + 𝑐. 𝑐 

+
1

2
𝑥(ଵ)(𝜔ଵ)𝑥(ଵ)(𝜔ଶ)𝑒ି௜(ఠభାఠమ)௧ + 𝑐. 𝑐. 

+
1

2
𝑥(ଵ)(𝜔ଵ) ቀ𝑥(ଵ)(𝜔ଶ)ቁ

∗
𝑒ି௜(ఠభିఠమ)௧ + 𝑐. 𝑐. 

+
1

2
ห𝑥(ଵ)(𝜔ଵ)ห

ଶ
+

1

2
ห𝑥(ଵ)(𝜔ଶ)ห

ଶ
 

 (8.35) 

showing that we also obtain terms with a frequency that is the sum of the original driving 
frequencies, and terms with a frequency that is given by the difference between the driving 
frequencies. The corresponding processes are called sum frequency generation and 
difference frequency generation.  
 
The nonlinear susceptibilities describing sum and difference frequency mixing are defined 
by  

𝑃(ଶ)(𝜔ଵ + 𝜔ଶ) = 𝜀଴𝜒(ଶ)(𝜔ଵ + 𝜔ଶ; 𝜔ଵ, 𝜔ଶ)2𝐸ଵ𝐸ଶ (8.36) 

𝜒(ଶ)(𝜔ଵ + 𝜔ଶ; 𝜔ଵ, 𝜔ଶ) =
ே௘య௔

ସఌబ௠మ

ଵ

஽(ఠభାఠమ)஽(ఠభ)஽(ఠమ)
 (8.37) 

and hence 

𝑃(ଶ)(𝜔ଵ − 𝜔ଶ) = 𝜀଴𝜒(ଶ)(𝜔ଵ − 𝜔ଶ; 𝜔ଵ, −𝜔ଶ)2𝐸ଵ𝐸ଶ
∗ (8.38) 

𝜒(ଶ)(𝜔ଵ − 𝜔ଶ; 𝜔ଵ, −𝜔ଶ) =
௔

ସ
ቀ

௘

௠
ቁ

ఠ೛
మ

஽(ఠభିఠమ)஽(ఠభ)஽(ିఠమ)
 (8.39) 

The shows that we have resonances at each of the three frequencies involved in the process.  
 
While the anharmonic oscillator model is somewhat limited in accuracy, we should take 
away some important messages from it:  
 
(2) processes require a medium that lacks inversion symmetry 
(2) processes result in sum and difference frequency generation. In the case of degenerate 
(1=2) mixing, these correspond to second harmonic generation and optical rectification.  
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Resonance enhancement of (2) can result if any of the frequencies involved lies close to a 
material resonance. In quantum mechanical systems where there are several resonances 
more than one frequency can be resonantly enhanced.  
The nonlinear susceptibilities are related to the linear susceptibilities.  
 
The last comment relates to Miller’s rule, which can be argued as follows:  
 
We found:     (note:  factor 1/4 missing – check) 

𝜒(ଶ)(𝜔ଵ + 𝜔ଶ; 𝜔ଵ, −𝜔ଶ) =
𝑁𝑒ଷ𝑎

𝜀଴𝑚ଶ

1

𝐷(𝜔ଵ + 𝜔ଶ)𝐷(𝜔ଵ)𝐷∗(−𝜔ଶ)
 

 (8.40) 

but we also found that  

𝜒(ଵ)(𝜔) =
ே௘మ/ఌబ௠

஽(ఠ)
 (8.41) 

or 

ଵ

஽(ఠ)
= 𝜒(ଵ)(𝜔)

ఌబ௠

ே௘మ (8.42) 

This allows us to write 

𝜒(ଶ)(𝜔ଵ + 𝜔ଶ; 𝜔ଵ, 𝜔ଶ) =
𝜀଴

ଷ𝑚ଷ

𝑁ଷ𝑒଺
𝜒(ଵ)(𝜔ଵ + 𝜔ଶ)𝜒(ଵ)(𝜔ଵ)𝜒(ଵ)(𝜔ଶ) ×

𝑁𝑒ଷ

𝜀଴𝑚ଶ
𝑎

=
𝜀଴

ଶ𝑚𝑎

𝑁ଶ𝑒ଷ
𝜒(ଵ)(𝜔ଵ + 𝜔ଶ)𝜒(ଵ)(𝜔ଵ)𝜒(ଵ)(𝜔ଶ)  

 (8.43) 

If we know a/N2 and (1) at each frequency in the process, we will have an estimate of (2).  
 
Miller (Appl. Phys. Lett. 5, 17 (1964)) noted that for all non-centrosymmetric materials 
a/N2 appears to be roughly constant, i.e. he found that for several different materials 

ఞ(మ)(ఠభାఠమ;ఠభ,ఠమ)

ఞ(భ)(ఠభାఠమ)ఞ(భ)(ఠభ)ఞ(భ)(ఠమ)
~𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝛿  (8.44) 

where  

𝛿 =
𝜀଴

ଶ𝑚𝑎

𝑁ଶ𝑒ଷ
 

This constant is known as Miller’s delta. Variations in Miller’s  are limited to a factor ~2. 
Miller’s rule allows us to estimate the value of (2) for a material without having to measure 
it. Typically,  ~2.510-13 m/V.  
 
In a medium with n1.5, we have X  n2-1 ~1.25. In this case we have  

𝜒(ଵ)(𝜔ଵ + 𝜔ଶ)𝜒(ଵ)(𝜔ଵ)𝜒(ଵ)(𝜔ଶ) ≈ 2 (8.45) 

Typical values of (2) are 5E-13 m/V or 0.5 pm/V. 
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Centrosymmetric materials – THG and nonlinear refraction 

Centrosymmetric materials are materials that are invariant under the transformation r  -r. 
For such materials, a=0, and hence (2) is zero. Hence the lowest order anharmonic term is 
mbx3. The equations of motion in this case become 

𝜆ଵ   ∶      𝑥̈(ଵ) + 𝛾𝑥̇(ଵ) + 𝜔଴
ଶ𝑥(ଵ) = −

௘

௠
𝐸(𝑡)  

𝜆ଷ   ∶      𝑥̈(ଷ) + 𝛾𝑥̇(ଷ) + 𝜔଴
ଶ𝑥(ଷ) = −𝑏൫𝑥(ଵ)(𝑡)൯

ଷ
 (8.46) 

Note that all materials (including the non-centrosymmetric ones) have a finite third order 
anharmonicity coefficient b. This means that the effects described below can be observed 
in all materials at sufficient incident irradiance.  
 
For a monochromatic driving field 

𝐸(𝑡) =
ଵ

ଶ
𝐸ଵ𝑒ି௜ఠ௧ + 𝑐. 𝑐. (8.47) 

we have  
  

𝑥(ଵ)(𝜔𝑡) =
ଵ

ଶ
𝑥(ଵ)(𝜔)𝑒ି௜ఠ௧ + 𝑐. 𝑐. (8.48) 

 
In the third order equation of motion this leads to a driving term proportional to  

ቀ𝑥(ଵ)(𝑡)ቁ
ଷ

=
1

2
ቀ𝑥(ଵ)(𝜔)ቁ

ଷ
 𝑒ିଷ௜ఠభ௧ + 𝑐𝑐 

+
1

2
⋅ 3𝑥(ଵ)(𝜔)ห𝑥(ଵ)(𝜔)ห

ଶ
𝑒ି௜ఠ௧ + 𝑐. 𝑐. 

 (8.49) 

resulting in a polarization component oscillating at 3, the third harmonic, and a 
component oscillating at a frequency . This intensity dependent contribution to the 
susceptibility at the fundamental frequency results in an intensity dependent refractive 
index and intensity dependent absorption.  
 
Now, for the component at  we have 

𝑥(ଷ)(𝜔) =  −
−3𝑏𝑒ଷ/(2𝑚)ଷ

𝐷(ω)𝐷(ω)𝐷(ω)𝐷(−ω)
|𝐸ଵ|ଶ𝐸ଵ 

𝑃(ଷ)(𝜔) = −𝑁𝑒𝑥(ଷ)(𝜔) =  
−3𝑁𝑏 𝑒ସ/(2𝑚)ଷ

𝐷ଷ(𝜔)𝐷(−𝜔)
|𝐸ଵ|ଶ𝐸ଵ 

 (8.50) 

But 

𝑃(ଷ)(𝜔) = 𝜀଴𝜒(ଷ)(𝜔; 𝜔, 𝜔, −𝜔)|𝐸ଵ|ଶ𝐸ଵ 
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𝜒(ଷ)(𝜔; 𝜔,  𝜔,  − 𝜔) =
𝑏

8
 ቀ

𝑒

𝑚
ቁ

ଶ 𝜔௣
ଶ

𝐷(𝜔)𝐷(𝜔)𝐷(𝜔)𝐷(−𝜔)
 

 (8.51) 

and 

𝜒(ଷ)(3𝜔; 𝜔,  𝜔,  𝜔) =
𝑏

8
 ቀ

𝑒

𝑚
ቁ

ଶ 𝜔௣
ଶ

𝐷(3𝜔)𝐷(𝜔)𝐷(𝜔)𝐷(𝜔)
 

 (8.52) 

corresponding to the third order susceptibility contribution giving rise to a third harmonic 
signal.  
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Chapter 9 – Quantum mechanics  
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
The preceding Chapters described light-matter interaction in classical terms. To fully 
understand many modern optical effects it is necessary to realize that under certain 
conditions matter must be described as having wave-like properties. For bound electrons 
this leads to distinct possible states with energies that can only take on specific values. This 
in turn means that optical transitions that change the energy of a system must involve 
discrete amounts of electromagnetic energy, leading to the surprising realization that our 
continuous EM waves must be seen as containing ‘packets’ of energy, known as photons. 
Most of this course deals with the semiclassical view of light-matter interaction, which 
means that EM waves are treated as classical waves, while electrons are described with 
quantum mechanical states.  
 
More in-depth CREOL courses dealing with quantum mechanics:  
 

OSE6349 Applied Quantum Mechanics for Optics and Engineering: Elements 
of quantum mechanics that are essential for understanding many areas in modern 
optics and photonics. 
 
OSE6347 Quantum Optics: Semi-classical treatment of light/matter interaction 
(quantized atomic states and Maxwell's equations), density matrix theory, coherent 
optical transition, pulse propagation. 

 
For the CREOL course OSE5312 the quantum mechanical description of light matter 
interaction is taught from select chapters in David A. Miller’s book ‘Quantum Mechanics 
for Scientists and Engineers’. The topics that are covered in OSE5312 are listed in 
Appendix K. Below follows an abbreviated (but ever expanding) description. 
 

The early days 

In the late 19th century, it was found that measurements on optical transitions in the 
hydrogen atom could not be explained using the classical mechanical model of a negatively 
charged electron orbiting a positively charged core, held together by the Coulomb force (F 
= q1q2/40r2). The classical model would predict that the electron could orbit at any 
arbitrary distance, and have a continuous spectrum of allowed energies. When taking into 
account that the orbiting electron should radiate energy (recall: accelerating charge 
radiates, Ch1), the classical model incorrectly predicts that the electron would lose energy 
as it orbits, and would therefore spiral toward the core causing all matter to collapse. 
Thankfully this doesn’t happen.  
 
By carefully studying the hydrogen absorption and emission spectra, Rydberg found that 
hydrogen absorbs light at very specific frequencies, corresponding to free space 
wavelengths 0 that follow a surprisingly simple relation: 
 

1

𝜆଴
= 𝑅ு ൬

1

𝑛ଵ
−

1

𝑛ଶ
൰ 
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with RH the Rydberg constant 1.097 um-1, and n1 < n2 both integers. Based on this work 
and analysis by Bohr, Louis the Broglie hypothesized that any moving object has an 
associated wave character with a wavelength given by  = h/p where h is the Planck 
constant (6.626 10-34 Js). Here p represents the momentum of the moving particle, here the 
electron orbiting the ion core. This led to the following important relation between quantum 

mechanical momentum, and the matter wavelength 𝜆 =
௛

௣
 known as the de Broglie 

wavelength. This hypothesis was later found to accurately describe electron diffraction by 
a Ni crystal http://prola.aps.org/abstract/PR/v30/i6/p705_1 (1927). The wave-like behavior 
of particles has many profound consequences in physics. Here we will focus mostly on the 
effect of the wave-like nature of electrons on their possible energies and movement.  

The wavefunction 

As discussed above, electrons show behavior that is wave-like. This means that we can no 
longer fully describe an electron simply with a position and a velocity. Instead we need a 
function that describes the ‘matter wave amplitude’ as a function of position. This kind of 
particle amplitude is called a wavefunction, typically written as 𝜓(𝑥, 𝑦, 𝑧).xvi While ‘matter 
amplitude’ doesn’t have a classical analog, it can be used to calculate a wide range of 
observable physical properties.  
 
If 𝜓 is the electron wavefunction, then the probability of finding the electron in 
infinitesimal volume dxdydz is proportional to 

𝑃ௗ௏ ∝ |𝜓(𝑥, 𝑦, 𝑧)|ଶ𝑑𝑥𝑑𝑦𝑑𝑧 (9.1) 

We can change the ‘proportional’ sign in this equation to an ‘equals’ sign if we normalize 
the wavefunction as follows: 

𝜓ே =
𝜓

ඥ∫|𝜓|ଶ𝑑𝑥𝑑𝑦𝑑𝑧
 (9.2) 

In the following we will assume that we are dealing with normalized wavefunctions, 
meaning that |𝜓|ଶ represents the probability density, i.e. the probability of finding the 
electron per unit volume.  
 
Note that the wave description of electrons has some similarities to the wave description 
of light.xvii We know that light intensity (‘photon probability’) scales with |E|2, just like the 
electron probability scales with |𝜓|ଶ.  

Electron momentum and kinetic energy 

As mentioned above, the wavelength of the electron was experimentally found to be related 
to its momentum: 

                                                 
xvi In OSE5312 we exclusively look at single-particle wavefunctions, but the concept can also be extended to 
states involving multiple particles, with e.g. a wavefunction 𝜓(𝑟ଵ, 𝑟ଶ) describing ‘what is the probability 
(amplitude) that particle 1 is at position r1, and particle 2 is at position r2?’ 
xvii There are also some very important differences: the electron amplitude is scalar, not vectorial. Electrons 
cannot be absorbed or dissipated in the way that light can. Electrons are fermions, photons are bosons, which 
has – among other things – important consequences for thermal distributions.   
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𝜆௘ =
ℎ

𝑝
 (9.3) 

This is called the de Broglie wavelength of the electron.xviii  
 
If 𝜓 describes an electron wave with a well-defined momentum p everywhere, then 
apparently it should have the same wavelength everywhere. This means that a freely 
moving electron with constant momentum can be described by a wave with a fixed 
wavevector k. The (unnormalized) wavefunction of a free undisturbed electron is then  

𝜓௘(𝑧) =  𝑒௜௞௭. (9.4) 

In this expression the electron wavevector is linked to the wavelength in the usual way: 

𝑘 =
ଶగ

ఒ೐
 . Comparing this with the de Broglie wavelength, we find the following expression 

for the electron momentum:  

𝑝 = ℏ𝑘. (9.5) 

Note that this expression for the momentum is only valid for a particle with a perfectly 
defined momentum everywhere.xix At any point in space we can extract the momentum by 
investigating the wavelength of this plane wave, which we can do by taking a single spatial 
derivative. For an electron moving along the z direction we have  

𝑑

𝑑𝑧
𝜓௘(𝑧) =

𝑑

𝑑𝑧
𝑒௜௞೥௭ = 𝑖𝑘௭ 𝑒௜௞೥௭ = 𝑖

𝑝௭

ℏ
𝑒௜௞೥௭ (9.6) 

where the last step uses 𝜆 = ℎ/𝑝. We have found the relation  

−𝑖ℎ
𝑑

𝑑𝑧
𝜓௘(𝑧) = 𝑝௭   𝑒௜௞೥௭ (9.7) 

where pz is the momentum of the electron along the z-direction. We see that taking the 
spatial derivative of our wavefunction places a multiplier in front of our original 
wavefunction that tells us about momentum. The operation that we carry out on the left is 
called an ‘operator’, here specifically the momentum operator. Operators are written with 
a ‘hat’, so we have  

𝑝̂௭ = −𝑖ℏ
𝑑

𝑑𝑧
 (9.8) 

When the electron wavefunction has a well-defined (‘single valued’) property everywhere, 
the electron is said to be in an Eigenstate, and in this case  is said to be an Eigenfunction. 
Our free electron apparently satisfies the relation 

𝑝̂௭ 𝜓௘(𝑧) = 𝑝௭ 𝜓௘(𝑧) (9.9) 

This says: wherever you look, the electron wave has the same periodicity, and therefore 
the same momentum. In this case  is apparently a momentum Eigenfunction: the operation 
𝑝̂௭ acting on wavefunction 𝜓 produces a result with the same shape as 𝜓, just multiplied 

                                                 
xviii This is a general property of matter. For example, a moving neutron also has a de Broglie wavelength 
related to its momentum. Since the neutron is much heavier than the electron, at the same velocity it will have 
a much higher momentum and a much smaller wavelength. 
xix In fact this is also the appropriate expression for the momentum of a photon, a massless quantum particle 
of light.  
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by its momentum value. This also explains the name Eigenfunction: the word ‘Eigen’ 
comes from German meaning ‘self’, and an ‘Eigenfunction’ of the momentum operator is 
a function that turns into itself  (maintains its original shape) when you carry out the 
momentum operation.  
 
We saw that we can learn about the momentum of a particle by investigating the single 
spatial derivative of the wavefunction. It turns out that we can also investigate related 

properties that depend on momentum, for example the kinetic energy 
ଵ

ଶ
𝑚𝑣ଶ =

௣మ

ଶ௠
. We can 

use the momentum operator to construct an operator that represents the kinetic energy. For 
an electron in a momentum Eigenstate we had relation 9.9. Since the right-hand side is a 
constant times the momentum Eigenfunction, it’s easy to see that our free electron also 
satisfies 

𝑝̂௭[𝑝̂௭ 𝜓௘(𝑧)] = −𝑖ℏ
𝑑

𝑑𝑧
[𝑝௭ 𝜓௘(𝑧)] = −𝑖ℏ𝑝௭

𝑑

𝑑𝑧
 𝜓௘(𝑧) = 𝑝௭

ଶ𝜓௘(𝑧) (9.10) 

We write the act of applying operator 𝑝̂௭ twice in a row as 𝑝̂௭
ଶ, so we have: 

𝑝̂௭
ଶ𝜓(𝑧) ≡ 𝑝̂௭[𝑝̂௭ 𝜓௘(𝑧)] (9.11) 

For general statements about operators we often omit the wavefunction, so the previous 
relation is often written as  

𝑝̂௭
ଶ ≡ 𝑝̂௭𝑝̂௭ (9.12) 

We have seen that in a constant potential an Eigenfunction of 𝑝̂௭ is also an Eigenfunction 
of 𝑝̂௭

ଶ. We can now construct an operator that represents kinetic energy:  

𝑝̂௭
ଶ

2𝑚௘
𝜓(𝑧) = −𝑖ℏ

𝑑

𝑑𝑧
൤−𝑖ℏ

𝑑

𝑑𝑧
൨

1

2𝑚௘
 𝜓(𝑧) = −

ℏଶ

2𝑚௘

𝑑ଶ

𝑑𝑧ଶ
𝜓(𝑧) (9.13) 

We have constructed the kinetic energy operator:  

𝐸෠௞௜௡𝜓(𝑧) = −
ℏଶ

2𝑚௘

𝑑ଶ

𝑑𝑧ଶ
𝜓(𝑧)    ⇒     𝐸෠௞௜௡ ≡ −

ℏଶ

2𝑚௘

𝑑ଶ

𝑑𝑧ଶ
 (9.14) 

A system that has perfectly defined kinetic energyxx must be in a kinetic energy Eigenstate, 
and must therefore satisfy  

𝐸෠௞௜௡𝜓(𝑧) = −
ℏଶ

2𝑚௘

𝑑ଶ

𝑑𝑧ଶ
𝜓(𝑧)   = 𝐸௞௜௡ 𝜓(𝑧) (9.15) 

with 𝐸௞௜௡ on the right hand side a number. Substituting our momentum Eigenfunction in 
vacuum 𝜓௘(𝑧) =  𝑒௜௞௭ into this relation we find  

𝐸෠௞௜௡𝜓(𝑧) = −
ℏଶ

2𝑚௘

𝑑ଶ

𝑑𝑧ଶ
𝑒௜௞௭ =

ℏଶ𝑘ଶ

2𝑚௘
 𝜓(𝑧) (9.16) 

We have found the ‘dispersion relation of free electrons’, showing the free electron energy 
as a function of wavevector. Note that this follows simply from the de Broglie wavelength: 
previously we found (for a plane wave) 𝑝 = ℏ𝑘, and we already knew that classically 

                                                 
xx Note that having a single kinetic energy value means that the potential energy is not allowed to change. 
This relation thus only holds for electrons in a flat potential, e.g. in vacuum without applied fields.  
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𝐸௞௜௡ = 𝑝ଶ/2𝑚, so the quadratic dependence of energy on wavevector is an expected result 
for a free electron.  

The Time-independent Schrödinger Equation 

If an electron is placed near a positive charge or even just in a constant applied field, it will 
have a position-dependent potential energy, which here we call 𝑉(𝑟). This is not the electric 
potential: in most quantum mechanical formulas the function 𝑉(𝑟) represents potential 
energy, which for an electron in an electric potential 𝑉௘(𝑟) is simply given by  𝑉(𝑟) =
−𝑒𝑉௘(𝑟). Energy conservation states that if an electron moves to a region with lower 
potential energy, it must gain a corresponding amount of kinetic energy. With this in mind, 
we can also construct an operator that describes the total electron energy E that is the sum 
of kinetic and potential energy. We will call this simply ‘the energy’. If an electron has a 
well-defined energy then apparently the sum of the kinetic and potential energy is the same 
at every position. Such an energy Eigenfunction must satisfy:   

𝐸෠௧௢௧𝜓(𝑧) = ൣ𝐸෠௞௜௡ + 𝑉(𝑧)൧𝜓(𝑧) = 𝐸𝜓(𝑧) (9.17) 

The term between the square brackets is the ‘total energy operator’ known as the 
Hamiltonian 𝐻෡:  

𝐻෡𝜓(𝑧) = ቈ−
ℏଶ

2𝑚௘

𝑑ଶ

𝑑𝑧ଶ
+ 𝑉(𝑧)቉ 𝜓(𝑧) (9.18) 

An electron in a static potential distribution can have a well-defined energy only if the 
wavefunction is an energy Eigenfunction that satisfies  

ቈ−
ℏଶ

2𝑚௘

𝑑ଶ

𝑑𝑧ଶ
+ 𝑉(𝑧)቉ 𝜓(𝑧) = 𝐸𝜓(𝑧). (9.19) 

This is known as the Time-independent Schrödinger equation. For a three-dimensional 
system the Time-independent Schrödinger equation is: 

൭−
ℏଶ

2𝑚଴
∇ଶ +  𝑉(𝑟)൱ 𝜓(𝑟) = 𝐸 𝜓(𝑟) (9.20) 

Solutions to the time-independent Schrödinger equation are Energy Eigenfunctions, which 
represent possible stationary electron distributions, for example bound electron states of an 
atom.  
 
We noted previously that a momentum Eigenfunction in constant potential is also a kinetic 
energy Eigenfunction. Substituting a trial function 𝜓௘(𝑧) =  𝑒௜௞௭ into the TISE with 
constant potential we find    

ቈ−
ℏଶ

2𝑚௘

𝑑ଶ

𝑑𝑧ଶ
+ 𝑉቉ 𝑒௜௞௭  = 𝐸𝑒௜௞௭ ⇒   𝐸 = ቈ

ℏଶ𝑘ଶ

2𝑚
+ 𝑉቉ (9.21) 

The graph below shows the relation between total energy for a free electron in a constant 
potential of 0 eV (green curve) and a constant potential of 2 eV (blue curve). The frequency 
axis will be discussed later. Note that unlike photons (massless particles) in vacuum, 
electrons in vacuum have a quadratic dispersion relation, which is typical for particles with 
mass.  
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Figure 9.1 Free electron dispersion 

Energy Eigenfunctions in important binding potentials 

The time-independent Schrödinger equation only allows for wavefunctions that represent 
stationary electron distributions with a well-defined energy in the presence of a static 
potential distribution. Such allowed electron waves are known as ‘electron states’. Our 
bound electrons from the Lorentz model (see Chapter 5) are electrons in such bound states 
around an atom core. To understand light-matter interaction from a quantum mechanical 
perspective, we first need to consider possible electron states, i.e. look at solutions to the 
time-independent Schrödinger equation in a static binding potential. Once we have found 
such allowed bound states, we will analyze how an applied electric field modifies the states 
(‘push the electron around’).   
 
Important examples for optical materials are (quasi) free electrons, already discussed 
above), the Coulomb potential which describes bound electrons around an atom core, 
quantum wells in semiconductors that support trapped electron states with energies that 
depend on the well width, and the harmonic binding potential which describes molecular 
vibrations (and in fact the electromagnetic field, but this is outside the scope of these notes). 
The allowed states in these potentials will be discussed below.  

Electron wavefunctions in a one-dimensional infinitely deep square well 

One of the easiest to analyze ‘electron binding potentials’ is the one-dimensional  infinite 
square well, which is represented by a region where the potential energy is constant, 
surrounded by regions where the potential energy is infinitely high. This seems like an 
entirely unphysical test system, but surprisingly it turns out that this system is very relevant 
to modern optics: it resembles to a great degree the situation in semiconductor quantum 
wells, which will be discussed later.  
 
The figure below shows the position dependent potential of a square well extending from 
z=0 to z=Lz (the ‘length along the z direction’). Inside the well we set the V=0, and outside 
we set the potential to a constant value V0. For an infinite square we take V0  . Under 
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this condition, the electron cannot leave the well, meaning that the probability density 
outside the well will be zero, and therefore also =0 outside the well.  
 

 
Figure 9.2 Schematic of square quantum well and example physical system 

 
To find all possible wavefunctions inside the infinite square well, we are looking for 
solutions to the time independent Schrödinger equation  

൭−
ℏଶ

2𝑚଴
∇ଶ + 𝑉(𝒓)൱ 𝜓 = 𝐸𝜓 

which in this one-dimensional situation simplifies to 

−
ℏଶ

2𝑚଴
  

dଶ𝜓(𝑧)

𝑑𝑧ଶ
 + 𝑉(𝑧)𝜓(𝑧) = 𝐸𝜓(𝑧) 

Since we have set V=0 inside the well, wavefunctions in the well should satisfy 

−
ℏଶ

2𝑚଴
  

dଶ𝜓(𝑧)

𝑑𝑧ଶ
 = 𝐸𝜓(𝑧) 

It is easy to recognize that this will lead to solutions of the form  𝜓 ∝ 𝑒௜௞௭ where the 
wavevector will be energy dependent (larger E  larger double derivative needed = larger 
k  shorter wavelength). Substituting this in Eq. x we find the relation 

ℏଶ𝑘ଶ

2𝑚଴
𝜓(𝑧) = 𝐸𝜓(𝑧) 

We have obtained a simple relation between energy and wavevector:  

𝐸 =
ℏଶ𝑘ଶ

2𝑚଴
 

Note that this relation assumes that V=0. The more general result including a position 
independent potential energy would yield 
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𝐸௞௜௡ = 𝐸 − 𝑉 =
ℏଶ𝑘ଶ

2𝑚଴
 

Solutions to the TISE must satisfy certain boundary conditions. In general, in any realistic 
potential distributions the wavefunction must be (1) finite, (2) continuous, and (3) 
continuously differentiable. For the limiting case of infinitely high potential walls, the third 
requirement is not considered.  
 
Since =0 for z  0 and z  Lz, our solutions must reach zero amplitude for z=0 and z=Lz. 
This requirement cannot be satisfied by solutions containing only a single wavevector k, 
since functions of the form 𝜓 ∝ 𝑒௜௞௭ have a nonzero amplitude everywhere. To solve this 
problem we consider superpositions of the form 

𝜓 = 𝐴 𝑒௜௞௭ + 𝐵 𝑒ି௜௞௭ 

To satisfy the requirement of zero amplitude at z=0, we require  

𝐴 + 𝐵 = 0  

or A= -B. To satisfy the requirement of zero amplitude at z=Lz, we thus require  

𝐴 𝑒௜௞௅೥ − 𝐴 𝑒ି௜௞௅೥ = 0 

This is equivalent to requiring  

𝑒௜௞௅೥ −  𝑒ି௜௞௅೥ = 2𝑖 sin 𝑘𝐿௭ = 0 

The condition sin 𝑘𝐿௭ = 0  is satisfied whenever the argument of the sine term is n with 

n an integer, i.e.  𝑘𝐿௭ = 𝑛𝜋, or 𝑘 = 𝑛 ቀ
గ

௅೥
ቁ. We thus have an infinite number of allowed 

solutions of the form  

𝜓 = 𝐴௡ sin ൬
𝑛𝜋

𝐿௭
𝑧൰ 

where An the magnitude of An is determined by requiring that the wavefunction is 
normalized, and with an arbitrary complex phase.  
 
The energy of the allowed wavefunctions or ‘energy Eigenstates’ is given byxxi  

𝐸௡ =
ℏଶ𝑘ଶ

2𝑚
=

ℏଶ

2𝑚
൬

𝑛𝜋

𝐿௭
൰

ଶ

 

Note:  the energy of the wavefunction increases quadratically with n, and decreases as the 
well width is increased.  
 
One important conclusion is that for any well size, the lowest energy solution has a non-
zero energy given by  

𝐸ଵ
ஶ =

ℏଶ

2𝑚
൬

𝜋

𝐿௭
൰

ଶ

  

                                                 
xxi Note: strictly speaking this is the kinetic energy term only, but since we have set V=0 inside the well, the 
total energy E is equal to the kinetic energy ℏଶ𝑘ଶ/2𝑚 in this case. 
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where the superscript  will be used to represent the fact that this is the solution of the 
infinite square well. This type of minimum energy is called the ‘zero point energy’ of the 
system. It is easy to understand that such minimum energy exists: the requirement of zero 
wavefunction amplitude at the well edges and nonzero amplitude inside the well implies 
finite curvature (double spatial derivative) of the wavefunction, which is associated with 
finite kinetic energy through the TISE.  
 
This same zero-point energy also explains the concept of ‘quantum confinement’: the 
(lowest) energy of an electron can be increased by confining the electron in ever smaller 
volumes. This forms the basis of the tuning of light emission in semiconductor quantum 
dots.  
 

 
Figure 9.3 The first three Eigenstates of the infinite square well 

Parity of quantum mechanical states 

In the case of the infinite square well we saw that the allowed quantum states or Energy 
Eigenfunctions had well-defined symmetry properties. Our binding potential is inversion 
symmetric, and so is the probability distribution of all corresponding states. The 
wavefunction itself though can be either symmetric (n=1,3,5,…) or anti-symmetric 
(n=2,4,6, …). The symmetry of wavefunctions is described by the term parity.  Symmetric 
states are said to have even parity, while anti-symmetric wavefunctions are said to have 
odd parity.xxii In our square well example wavefunctions are either perfectly odd or 
perfectly even. We will find later that light can induce transitions between states with 
opposite parity, while it cannot induce transitions between states with equal parity. This 
kind of relation that selectively allows specific transitions is called a selection rule. We 
will discuss this in more detail when we cover optical excitation and time-dependent 
perturbation theory.   

States of the finite square well 

In the previous section we discussed the somewhat unrealistic but very instructive case of 
the infinite square well. In that case the wavefunction probability became mathematically 
zero at the boundary because the electron has zero chance to enter this infinitely high 
potential region. In this case our continuous solutions went from having finite amplitude 
and slope to having zero amplitude and slope at the boundary. In the present section we 

                                                 
xxii Note that in our choice of n=1 for the ground state, even states are unfortunately described by an odd 
number. Even parity means that the wavefunction is left-right symmetric, not that the number n is even. 
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discuss the more realistic case of a finite potential barrier, and we will see that the results 
for the infinite well is simply a limiting case of the finite well.  
 
For a wavefunction encountering a sharp finite potential barrier, the kinetic energy will 
suddenly drop, corresponding to a sudden change in the double spatial derivative. This 
means in this case the slope of the wavefunction is continuous. In the following we will 
consider bound states, meaning the electron will not have sufficient energy to overcome 
the barrier, in other words the total electron energy inside the well is less than the potential 
energy in the barrier. If we set the potential energy in the well to be V=0 and the barrier 
height is V0, this means E<V0. Inside the well the potential energy is flat, meaning the 
kinetic energy is constant, which is described by oscillatory solutions with a wavevector 

𝑘 = ඥ2𝑚𝐸/ℏଶ. Outside the well, the kinetic energy expression E-V0 becomes negative, 

corresponding to an imaginary wavevector 𝑘 = ±𝑖ඥ2𝑚(𝑉଴ − 𝐸)/ℏଶ. The allowed 
solutions are thus oscillatory in the well, with finite and continuous slope at the boundaries, 
and exponential decay outside the well. Example solutions are shown below (from Miller). 
The corresponding solutions look similar to those of the infinite well with well-defined 
parity (even, odd, even), however there are several key differences. First, there is a limited 
number of bound states, due to the requirement E<V0. Second, we see some finite 
probability just outside the well region, and higher-energy solutions extend the furthest 
outside the well. And last, the energy levels are a bit lower than the corresponding levels 
in the infinite square well. This can be understood by realizing that by allowing the 
amplitude to be finite a the well boundary, the wavefunction is allowed to be a bit more 
‘spread out’, corresponding to reduced curvature and thus reduced E. 
 

 
Figure 9.4 The only three Eigenstates of a particular finite square well 

States of the harmonic oscillator 

Another important quantum mechanical binding potential is the harmonic potential well. 
This describes for example mass held in place by a binding force that is linear in 
displacement, which is observed for example in molecular bonds, see Chapter 11. It also 
describes the electromagnetic field, with an energy that depends quadratically on field 
amplitude. The latter example is encountered in quantum optics, and is linked to properties 
such as spontaneous emission.  
 
Before looking at the solutions of the quantum harmonic oscillator, let’s first consider the 
classical harmonic oscillator. A ‘harmonic binding potential’ occurs in a system that 
follows Hooke’s law, with a restoring force 𝐹 = −𝐾𝑥. This kind of restoring force 

produces a parabolic potential energy distribution 𝑉 =
ଵ

ଶ
𝐾𝑥ଶ, and for a bound mass m 

allows for a single resonance frequency 𝜔଴ = ඥ𝐾/𝑚. The classical harmonic oscillator 
has a continuous range of allowed amplitudes and allowed total energies. At the center of 



 91

the potential well the potential energy is the lowers, and thus the oscillator moves the 
fastest.  
 
The time independent Schrödinger equation for the harmonic binding potential is 

−
ℏଶ

2𝑚

𝑑ଶ

𝑑𝑧ଶ
𝜓(𝑧) +

1

2
𝑚𝜔଴

ଶ𝑧ଶ𝜓(𝑧) = 𝐸𝜓(𝑧) 

Solving the time-independent Schrödinger equation for allowed electron states in a 
harmonic binding potential, we thus expect solutions that have high kinetic energy and thus 
short wavelength in the center, and evanescent (‘disappearing’) amplitude where the 
energy is less than the potential energy, see the discussion of the finite well. It turns out 
that these requirements do not allow a continuous range of allowed energies. Instead, we 
find discrete and evenly spaced allowed energy levels, with energies given by  

𝐸௡ = ൬𝑛 +
1

2
൰ ℏ𝜔଴ 

where 0 is the classical resonance frequency based on the shape of the potential energy 
and the electron mass. Here n is an integer, with the minimum value of n=0 corresponding 

to the zero point energy 𝐸଴ =
ଵ

ଶ
ℏ𝜔଴ of an electron in a harmonic potential (assuming 

V(0)=0). The corresponding normalized wavefunctions mathematically turn out to be 
products of a Hermite polynomial and a Gaussian.  
 

 
These wavefunctions make up a complete orthonormal set. The lowest energy state is again 
even, just like in all our symmetric binding potentials, and every next level has the opposite 
parity.  
 
 

 
 
 
 



 92

 
Figure 9.5 The lowest seven energy Eigenfunctions of a harmonic binding potential (from Miller) 

For realistic finite binding potentials the shape does not remain parabolic forever. It is 
typically observed that energy level spacings drop for high motion amplitude (large 
quantum number).   
 

States of the Coulomb potential 

The preceding examples all describe one-dimensional systems. To understand real-world 
systems we need to consider three-dimensional binding potentials. One important example 
involves the Coulomb potential of the hydrogen atom. The atom core of a hydrogen atom 
has a charge +1e, and a corresponding potential energy  

𝑉(𝑟) = −
1

4𝜋𝜖଴

𝑒ଶ

|𝑟|
 

This is a centrosymmetric potential, with vanishing attractive force and constant potential 
V=0 at large distance, and infinitely negative potential energy at r=0. Based on the 
preceding sections we might thus expect that the solutions will look oscillatory, and 
‘infinitely curved’ in the center. One key difference with the prior 1D cases is that the 
wavefunction may be curved in multiple directions, and consequently finding the kinetic 
energy involves taking a double spatial derivative along x, y, and z. The time independent 
Schrödinger equation for an electron around a hydrogen core is thus  

𝐻෡𝜓(𝑟) = ቈ−
ℏଶ

2𝑚
𝛻ଶ −

1

4𝜋𝜖଴

𝑒ଶ

|𝑟|
቉ 𝜓(𝑟) 

with r the electron position and the core assumed to be stationary at r=0. This is a reasonable 
approximation given that the atom core is more than thousand times heavier than the 
electron. Here we will not derive the solutions, but we will briefly discuss their properties. 
First of all, since the binding potential is spherically symmetric, at a fixed distance the 
potential energy is constant. This means that an energy Eigenfunction will have a constant 
kinetic energy at a fixed distance from the core. We thus expect to see something 
resembling a well-defined wavelength as we move around the atom. The allowed energies 
are again discrete, with the possible energies described by principal quantum number n and 
are given by    



 93

𝐸௡ = −
𝑅𝑦

𝑛ଶ
 

with Ry  13.6 eV the Rydberg unit of energy. Note that this energy dependence explains 
the observation made at the beginning of this chapter: possible transitions in the hydrogen 
atom occurred for wavelengths that satisfied the relation  

1

𝜆଴
= 𝐸௙ − 𝐸௜ = ቆ

1

𝑛୧
ଶ −

1

𝑛୤
ଶቇ 𝑅𝑦. 

The lowest-energy state with n=1 is strongly concentrated around the atom core. The next 
possible state with n=2 has higher total energy and higher kinetic energy, meaning ‘more 
waves’ or ‘more curvature’. Since this is a three dimensional system, this extra curvature 
may be observed either tangentially or radially. In other words, there may be additional 
angular momentum and/or additional radial variation. The angular motion is described by 
angular momentum quantum number l, an integer with possible values l=0 (‘only radial 
waves’) up to maximum value n=l (‘only tangential waves’). One last degree of freedom 
is the orientation of tangential motion. For a state with finite angular momentum, e.g. l=1, 
the electron may rotate ‘along the equator’ (along   in polar coordinates), but there may 
also be amplitude variation ‘from pole-to-pole’ (along 𝜃 in polar coordinates). The amount 
of variation along the equator is described by magnetic quantum number m, also an integer. 
Since rotation can be clockwise or counterclockwise, the  magnetic quantum number can 
be positive or negative, with a maximum magnitude of |m|=l (all angular moment along the 
equator). Together, the quantum numbers n, l, m fully describe motion of a single electron 
in a spherical binding potential.xxiii   
 
The spherical symmetry of the binding potential allows only very specific angular 
distributions, known as spherical harmonics. These wave solutions appear for example in 
spherical quantum dots and in the optical modes of spherical optical resonators. The 
functional form of the spherical harmonics looks fairly complicated, but is determined 
entirely by quantum numbers l and m, with a  𝜙 dependent phase given by 𝑒௜௠థ and a 𝜃 
dependent real amplitude, see Appendix J.  
 
For some principal quantum number n, there are solutions with relatively small angular 
momentum quantum number, i.e. l<n. In that case there must then be some ‘residual 
curvature’ that implies radial (along r) variation of the wavefunction. For example, if a 
state has zero angular momentum (l=0), but a principal quantum number n=3, then there 
must be a lot of radial variation in the wavefunction. Once the shape of V(r) is known, the 
radial behavior is entirely determined by the quantum numbers n and l, see Appendix J. 
 
          
  
 

                                                 
xxiii This excludes electron spin, spin-orbit interactions, reduced mass effects. 
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The total wavefunction is written as  

𝜓௡,௟,௠(𝑟, 𝜃, 𝜙) = 𝑅௡,௟(𝑟) 𝑌௟
௠(𝜃, 𝜙) 

Where 𝑌௟
௠(𝜃, 𝜙) are the spherical harmonics, and 𝑅௡,௟(𝑟) is the radial wavefunction. 

Examples of the spherical harmonics are shown below, the coloring indicating the real 
amplitude of the wavefunction. Also shown separately are the first few radial 
wavefunctions. 
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Two low-energy electron states of the hydrogen are show below, the ground state (n=0, 
l=0, m=0, and the first excited state with finite angular momentum (n=1, l=1, m=1). Note 
that the ground state is symmetric, while this first excited state is odd. We will find later 
that this makes it possible to excited a hydrogen atom from the ground state to the first 
excited state using light.  
 

 
 

Orthonormal complete sets 

To be added. Discuss based on infinite square well.  
 
Inner product of functions f and g defined as  

න 𝑓(𝑥)∗𝑔(𝑥) 𝑑𝑥 

Solutions to the infinite square well were of the form  

𝜓௡(𝑧) = ඨ
2

𝐿
sin ቀ

𝑛𝜋

𝐿
𝑧ቁ 

It is easy to prove that the inner product of two different energy Eigensolutions of the 
infinite square well results in zero:  
 

න 𝜓௡
∗ 𝜓௠ 𝑑𝑥 = 0  𝑓𝑜𝑟 𝑚 ≠ 𝑛 
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This is easy to see for states 1 and 2:  

න 𝜓ଵ
∗𝜓ଶ 𝑑𝑧 ∝ න sin(𝜋𝑧/𝐿) sin(2𝜋𝑧/𝐿) 𝑑𝑧

௅

଴

= 0 

The latter step can be seen intuitively since the first sine wave is even about the center of 
the well, and the second one is odd. The product will be odd, so the integral will be zero.  
 
Our Eigenstates are called ‘orthogonal’ since the inner product of different states gives 
zero. Similar to inner product of unit vectors (1,0,0) and (0,1,0): inner product zero means 
orthogonal.  
 
 
Other special property: normalized. It’s easy to prove that the inner product of one of our 
energy Eigenfunctions with itself produces 1:  

න 𝜓௡
∗ 𝜓௡ 𝑑𝑥 = 1 

Our Eigenfunctions are said to be normalized. Similar to ‘unit vectors’: inner product of 
(1,0,0) with itself has ‘unit length’.  
 
Final special property: completeness. Note: our Eigensolutions look like the terms in a 
Fourier series. Recall: Fourier series can be used to approximate any single-valued 
functional form on some finite domain (or any periodic functional form on an infinite 
domain), for example inside the infinite square well. In principle we’d need cosine terms 
as well, but our solutions must be zero at boundaries. Because we can build any 𝜓(𝑥) that 
satisfies the boundary conditions out of 𝜓௡ we call the set of 𝜓௡ a complete set.  
 
Recall: 𝜓௡ were normalized, orthogonal, and complete. 𝜓௡ is a complete orthonormal set.  

Expansion coefficients 

To be added. Once normalized, expansion coefficient squared represents probability. 

Dirac notation 

To be added. Discuss overlap integral, projection onto basis.  

Expectation value 

To be added. Being in superposition of states implies average energy, give formula in Dirac 
notation. Energy expectation, position expectation, dipole moment expectation value.  

Oscillatory dipole moment 

To be added. Eigenstate has time dependent amplitude, but constant probability 
distribution. Show that superposition of odd and even states has time dependent dipole 
moment. If light can induce oscillatory dipole moment, apparently light can ‘put some 
amplitude in state with opposite parity’. Can lead to dipole moment or disappearance of 
photons (=absorption). Discussed in time dependent perturbation theory.  
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Time dependent perturbation theory – excitation rate 

To be added. Effect of perturbation Hamiltonian, describe potential distribution of plane 
wave. Introduce line shape, joint density of states, cross section 

Time dependent perturbation theory – susceptibility  

To be added. Derive formula for dipole moment.  
 
 

The Time-Dependent Schrödinger Equation 

The previously discussed time-independent Schrödinger equation tells us possible 
stationary charge distributions (electron probability distributions) with well-defined 
energy in a static potential. However to describe light-matter interaction we will need to 
consider situations where we excite our quantum system (e.g. a bound electron) with an 
electromagnetic wave. The oscillatory electric field adds an oscillatory contribution to the 
potential energy, so the total potential energy distribution 𝑉(𝑟, 𝑡) contains both a static 
binding potential 𝑉଴(𝑟) and a contribution due to the presence of the EM wave 𝑉ாெ(𝑟, 𝑡). 
The response of the electron wavefunction to such time-dependent potential distributions 
is described by the time-dependent Schrödinger equation, given by  

൭−
ℏଶ

2𝑚଴
∇ଶ +  𝑉(𝑟, 𝑡)൱ 𝜓(𝑟, 𝑡) = 𝑖ℏ

𝜕

𝜕𝑡
𝜓(𝑟, 𝑡) (9.22) 

This relation can describe both the time dependent behavior of the electron in a dynamic 
potential, as well as the time dependent behavior of an electron in a static potential. 
 
Note that the time-dependent Schrödinger equation is much less restrictive than the time-
Independent Schrödinger equation. While the TISE only allows for wavefunctions with a 
perfectly defined energy in a static potential, the TDSE describes generally what happens 
to the electron in the presence of a binding potential and any applied electric fields. The 
TDSE states “if the electron has energy at a given position, the wavefunction at that 
position must change over time”. This means that this equation allows for an infinite range 
of complicated temporal and spatial behavior.  
 
The TDSE equation produces some important results when we consider a free electron in 
vacuum without any applied electric fields (V constant). In this case, and considering a 
one-dimensional situation (all movement along the z-axis), the time-dependent 
Schrödinger equation (TDSE) tells us  

ቈ−
ℏଶ

2𝑚଴

𝜕ଶ

𝜕𝑧ଶ
+ 𝑉቉   𝜓(𝑧, 𝑡) = 𝑖ℏ

𝜕

𝜕𝑡
𝜓(𝑧, 𝑡) (9.23) 

We already know that in vacuum we can have momentum Eigenstates which had the form 
of a plane wave, and we saw that those plane waves in vacuum also happened to be energy 
Eigenstates. If we multiply our entire plane electron wave by a constant, the result is still 
an energy Eigenstate. This is even true if the constant is time-dependent. Substituting such 
a time dependent energy Eigenfunction 

𝜓(𝑧, 𝑡) = 𝑓(𝑡)𝑒௜௞೥௭ (9.24) 
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into the TDSE we find a requirement on the time dependence:  

ቈ−
ℏଶ

2𝑚଴

𝜕ଶ

𝜕𝑧ଶ
+ 𝑉቉  𝑓(𝑡)𝑒௜௞೥௭ = 𝑖ℏ

𝜕

𝜕𝑡
𝑓(𝑡)𝑒௜௞೥௭ 

⇒  𝑓(𝑡) ቈ−
ℏଶ

2𝑚଴

𝜕ଶ

𝜕𝑧ଶ
+ 𝑉቉ 𝑒௜௞೥௭ = 𝑖ℏ𝑒௜௞೥௭

𝜕

𝜕𝑡
𝑓(𝑡) 

⇒  𝑓(𝑡)𝐸𝑒௜௞೥௭ = 𝑖ℏ𝑒௜௞೥௭
𝜕

𝜕𝑡
𝑓(𝑡) 

⇒
𝜕

𝜕𝑡
𝑓(𝑡) = −

𝑖

ℏ
𝐸 𝑓(𝑡) 

⇒ 𝑓(𝑡) = 𝑒ି௜ா௧/ℏ 

(9.25) 

We see that a free electron in an energy Eigenstate must oscillate with an angular frequency 
of 𝜔 = 𝐸/ℏ, in other words the total energy is linked to frequency according to 𝐸 = ℏ𝜔. 
This looks exactly the same as the formula for photon energy, but note that E here 
represents the total energy. This means that the frequency of the electron wavefunction can 
be changed with a static potential, while the photon frequency is not affected by a static 
potential.  
 
We can apparently have a time dependent energy Eigenfunction in vacuum of the form  

𝜓(𝑧, 𝑡) = 𝑒
௜(௞೥௭ି

ா
ℏ

௧) (9.26) 

We have found that a free electron in an energy Eigenstate is described by a propagating 
wave representing probability amplitude. This seems surprising: previously we stated that 
energy Eigenfunctions represented static probability distributions, but here we find an 
energy Eigenfunction that is a running wave. These statements are in fact not in conflict: 
calculating the probability density of our electron wave, we find for this energy Eigenstate 

|𝜓(𝑧, 𝑡)|ଶ = 𝜓∗(𝑧, 𝑡)𝜓(𝑧, 𝑡) =  𝑒
ି௜ቀ௞೥௭ି

ா
ℏ

௧ቁ
𝑒

ା௜ቀ௞೥௭ି
ா
ℏ

௧ቁ
= 1 (9.27) 

We see that our electron wave has a constant probability density everywhere, so the 
observable quantity ‘probability’ is actually not moving.  

Superposition of time dependent energy Eigenfunctions 

If we want to describe a moving free electron, we can construct an ‘electron wavepacket’ 
by superposing multiple plane momentum Eigenfunctions. This is in fact allowed by the 
TDSE: if we find different solutions to the TDSE then the superposition of these solutions 
is also a solution to the TDSE. This is easy to verify – try it. If we add electron plane waves 
with similar wavevector around an average wavevector 𝑘ത we can produce a localized 
probability distribution. This ‘particle pulse’ moves at a velocity known as the group 
velocity, which is given by 

𝑣௚൫𝑘ത൯ = ൬
𝑑𝜔

𝑑𝑘
൰

௞ୀ௞ത
 (9.28) 

Looking at Eq. 9.21 and using 𝐸 = ℏ𝜔 we see that for free electrons we have 
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𝐸 = ℏ𝜔 =
ℏଶ𝑘ଶ

2𝑚
+ 𝑉 ⇒ 𝑣௚ =

ℏ𝑘ത

𝑚
=

𝑝̅

𝑚
 (9.29) 

where 𝑝̅ is the average momentum of the electron waves. We see that an electron pulse 
with an average quantum mechanical momentum 𝑝 = ℏ𝑘 moves at a velocity given by 𝑣 =
𝑝/𝑚, which is what we expect classically.  

Uncertainty principle 

Note that our electron wavepacket no longer has a perfectly defined momentum. If the 
momentum was perfectly defined, then the electron wavefunction must continue oscillating 
in exactly the same way everywhere, meaning that the electron probability is infinitely 
spread out. By making a superposition of waves with different momentum (different 
wavevector), we can make a wavepacket that is localized in space. A more strongly 
localized wavepacket (small x)   requires the use of a wider range of wavevectors (k). 
This kind of relation is called an uncertainty relation. The uncertainty relation for 
momentum and position is 

Δ𝑥Δ𝑘 ≥
1

2
 (9.30) 

or equivalently after multiplying by ℏ 

Δ𝑥Δ𝑝 ≥
ℏ

2
 (9.31) 

Here the  represents the standard deviation. The ‘larger or equal’ part of the uncertainty 
relations implies that the superposition of many wavevectors doesn’t necessarily make a 
confined wavepacket; a maximally localized wavepacket requires the choice of very 
specific phases and amplitudes.  
 
For processes that have a time dependence related to the addition of wavefunctions with 
different energy (and thus different time dependence ) there is an energy-time uncertainty 
relation given by  

Δ𝜔Δ𝑡 ≥
1

2
 (9.32) 

or equivalently 

Δ𝐸Δ𝑡 ≥
ℏ

2
 (9.33) 
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Chapter 10 – Homogeneous and inhomogeneous broadening 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
In the preceding chapters we have seen optical transitions that occur at specific frequencies, 
with a linewidth determined by some damping process described by a damping constant  
(s-1). We might expect that a system containing many such oscillators will result in an 
absorption line with the same linewidth . If the linewidth of a collection of oscillators is 
practically the same as that of each individual oscillator, we call that line homogeneously 
broadened.   
 
In real world situations however it is often found that the oscillators in a system all behave 
slightly differently. This can happen for example with molecules in a gas laser, quantum 
dots in a quantum dot detector, or rare earth dopant ions in a fiber amplifier. In these cases 
an absorption line may be broad not because  is large, but instead because 0 is a little 
different for the different elements in the system.  If the linewidth of a collection of 
oscillators is larger than that of each individual oscillator, we call the line inhomogeneously 
broadened.   

Inhomogeneous broadening due to variations in local environment 

In many solid state systems, the atoms do not experience the same environment.  In some 
cases, they may be in some random host matrix (e.g. a glass) where the surrounding electric 
field is slightly different and somewhat random for each atom, causing the resonance 
frequency of each atom to be slightly different.  If the shift in the resonance frequency of 
each atom is random, the probability of having a given frequency shift with relative to the 
mean frequency is usually described by a Gaussian distribution.  In this case each atom has 
a different resonant frequency, which is known as inhomogeneous broadening. 
 

  
Figure 10.1: (left) Sketch of a block of glass containing dopants with an absorption line, and 

(right) sketch of the ground state and excited state energy levels. Variation in the local 
environment leads to variation in energy levels and transition energies, causing inhomogeneous 

broadening. 

Doppler broadening 

According to statistical mechanics of ideal gases, atoms (or molecules) in the gas phase 
have an isotropic temperature-dependent velocity distribution, described by the Maxwell-
Boltzmann distribution, given by  
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𝑓ெ஻(𝑣) = ቀ
𝑚

2𝜋𝑘𝑇
ቁ

ଷ/ଶ

4𝜋𝑣ଶ𝑒ି௠௩మ/ଶ௞் 

Here fMB(v)dv represents the fraction of atoms with a thermal velocity magnitude between 
v and v+dv, with m the mass of the atom (or ion, or molecule), and k the Boltzmann 
constant. When such a gas is illuminated using laser light propagating along the x-direction, 
some of the atoms travel away from the laser at velocity vx. These atoms will experience 
an electromagnetic wave with a reduced frequency, which affects the absorption spectrum. 
The modified frequency ’ experienced by the atoms is  

𝜔ᇱ = 2𝜋
𝑐 − 𝑣௫

𝜆଴
= 2𝜋𝑐

1 − 𝑣௫/𝑐

𝜆଴
= 𝜔 ቀ1 −

𝑣௫

𝑐
ቁ 

This frequency shift is called a Doppler shift. If the stationary atom had resonance 
frequency 0, we need a laser with a slightly higher frequency in order to excite this atom 
to compensate for this Doppler shift.xxiv The atom thus appears to have a modified 
resonance frequency 𝜔଴

ᇱ  that is given by  

𝜔଴′ =
𝜔଴

1 −
𝑣௫
𝑐

≈ 𝜔଴ ቀ1 +
𝑣௫

𝑐
ቁ 

The total absorption spectrum of a gas is thus composed of an ensemble of absorption lines 
from all atoms or molecules, slightly shifted depending on the velocity component toward 
or away from the excitation source. For fast atoms (high temperature or low atomic mass) 
the Doppler shift can be larger than the original atom linewidth. In this case we observe 
line broadening, a reduction of the peak absorption, and a change in the nature of the line 
shape, as discussed below.  
 
The inhomogeneously broadened absorption spectrum of atoms or molecules in a gas is 
related to the thermal velocity distribution. The Maxwell-Boltzmann distribution describes 

the probability distribution for the magnitude of the velocity |𝑣| = ൫𝑣௫
ଶ + 𝑣௬

ଶ + 𝑣௭
ଶ൯

ଵ/ଶ
. 

However since the Doppler shift depends on the atom velocity along the laser propagation 
direction, we need a probability distribution along a specific direction, e.g. vx. It can easily 
be shown that this projected velocity distribution, called the Maxwellian velocity 
distribution, is given by  

𝑓ெ(𝑣௫) = ቀ
𝑚

2𝜋𝑘𝑇
ቁ

ଵ/ଶ

 𝑒ି௠௩ೣ
మ/ଶ௞் . 

The graphs below show the Maxwell-Boltzmann distribution (left) and Maxwellian 
distribution (right) at room temperature (T=293 K) for a gas containing hydrogen 
molecules, oxygen molecules, and Xe atoms (or ions).  
 
Note that at the same temperature molecules with low weight (e.g. H2) move much faster, 
and that the typical room temperature velocities are hundreds of meters per second. Also 
note that it is relatively likely to have zero velocity along the x direction (right graph, 
maximum probability for vx=0). This tells us that most atoms contributing to the total 
absorption have vx  0, and we therefore expect that the absorption of a hot gas will still be 

                                                 
xxiv Note that this effect seems opposite to the redshift observed in astronomy. Hydrogen related lines appear 
red-shifted because distant stars are moving away from us, while here we are required to use a blue-shifted 
laser to excite molecules that are moving away from us. Are these observations in conflict with each other? 
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maximum at the original 0. However there are also many atoms with vx  0 which means 
that we will observe some blue-shifted and red-shifted absorption, corresponding to 
Doppler broadening.  
 

 
Figure 10.2: Maxwell-Boltzmann (left) and Maxwellian (right) velocity distribution for a room-

temperature gas of H2, O2, and Xe.  

We can learn about the resulting lineshape by considering each atom as a Lorentz oscillator 
with a susceptibility given by  

𝜒(𝜔) =
𝜔௣

ଶ

𝜔଴
ଶ − 𝜔ଶ − 𝑖Γ𝜔

 

but realizing that each atom will have its own modified resonance frequency  

𝜔଴
ᇱ (𝑣௫) = 𝜔଴ ቀ1 +

𝑣௫

𝑐
ቁ 

with probability 𝑓ெ(𝑣௫). The total susceptibility spectrum then follows from the addition 
(integration) of all susceptibility contributions for all possible vx: 

𝜒(𝜔) = න
𝜔௣

ଶ

𝜔଴
ᇱ (𝑣௫)ଶ − 𝜔ଶ − 𝑖Γ𝜔

𝑓ெ(𝑣௫) 𝑑𝑣௫

ஶ

ିஶ

 

Substituting fM this gives  

𝜒(𝜔) = ቀ
𝑚

2𝜋𝑘𝑇
ቁ

ଵ/ଶ

න
𝜔௣

ଶ

𝜔଴
ᇱ (𝑣௫)ଶ − 𝜔ଶ − 𝑖Γ𝜔

𝑒ି௠௩ೣ
మ/ଶ௞்𝑑𝑣௫

ஶ

ିஶ

 

With a known concentration N(m-3) this describes the entire complex dielectric function, 
and we can therefore calculate the Doppler-broadened absorption spectrum. We can find 
an approximate expression for the absorption coefficient by considering the resonance 
approximation   0, which we may do if the (Doppler-broadened) linewidth is much 
smaller than 0. In the resonance condition we have   

𝜒ᇱᇱ(𝜔) ≈
𝜔௣

ଶ

2𝜔଴
ቀ

𝑚

2𝜋𝑘𝑇
ቁ

ଵ/ଶ

න
Γ/2 

(ω଴
ᇱ (𝑣௫) − 𝜔)ଶ + (Γ/2)ଶ

𝑒ି௠௩ೣ
మ/ଶ௞்𝑑𝑣௫

ஶ

ିஶ
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For small susceptibility (n1) which is reasonable in the gas phase, we can approximate 

the absorption coefficient as 𝛼 = 2𝜅
ఠ

௖
≈

ఞᇲᇲఠ

௖
 resulting in the Doppler broadened 

absorption spectrum:  

𝛼(𝜔) ≈
𝜔௣

ଶ

2𝑐
ቀ

𝑚

2𝜋𝑘𝑇
ቁ

ଵ/ଶ

න
Γ/2 

(ω଴
ᇱ (𝑣௫) − 𝜔)ଶ + (Γ/2)ଶ

𝑒ି௠௩ೣ
మ/ଶ௞்𝑑𝑣௫

ஶ

ିஶ

 

The spectral shape of this inhomogeneously broadened absorption line is known as the 
Voigt lineshape.  We can look at the extreme cases of mostly homogeneous broadening 
and strong inhomogeneous broadening. Note that the integrand is just a product of a 

Gaussian function and a Lorentzian. Thermal line broadening dominates when  
ඥ௞்/௠

௖
≫

୻

ఠబ
. In this case the Lorentzian function becomes approximately a delta function that peaks 

when 𝜔 = ω଴
ᇱ (𝑣௫), i.e when 𝑣௫ =

(ఠିఠబ)௖

ఠబ
, resulting in a Gaussian lineshape: 

𝛼(𝜔) ≈
𝜔௣

ଶ

2𝑐
ቀ

𝑚

2𝜋𝑘𝑇
ቁ

ଵ/ଶ

𝑒
ି

௠(ఠబିఠ)మ

ଶ௞்
ቀ

௖
ఠబ

ቁ
మ

 

If the homogeneous width dominates, i.e. when  
ඥ௞்/௠

௖
≪  

୻

ఠబ
, then the Gaussian acts like 

a delta function and the absorption line reverts back to the original Lorentzian lineshape: 

𝛼(𝜔) ≈
𝜔௣

ଶ

2𝑐

Γ/2 

(ω଴ − 𝜔)ଶ + (Γ/2)ଶ
 

This transition from Lorentzian to Gaussian is highlighted in the graph below, which shows 
the lineshape in an argon gas with resonance at 514 nm, with an assumed linewidth of 109 
rad/s, shown at ‘0 K’, 10 K, and 293 K. Note that already at 10 K the thermally induced 
broadening becomes comparable to the 109 rad/s linewidth. Also note that the broadening 
results in a reduced peak absorption, and therefore also in a predicted reduction in the peak 
emission cross-section, and a reduced maximum gain if this transition is used for lasing or 
optical amplification. 

 

Figure 10.3: Examples of the Voigt lineshape for different temperatures 
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Chapter 11 – Interaction of light with molecular vibration and rotation 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
In Chapter 5 we studied the Lorentz oscillator model to describe electronic motion in 
response to a high frequency electromagnetic wave. There we ignored any motion of the 
nucleus, which was a reasonable approximation because atomic nuclei are at least three 
orders of magnitude heavier than electrons. However, atoms with a net charge (ions) can 
be moved by low-frequency light, resulting in NIR and IR absorption features associated 
with nuclear motion. In addition, we will see that a slight variation of electronic 
polarizability during vibration leads to Raman scattering. 

Molecular bonds 

To understand vibrational transitions in molecules, we first need to understand what holds 
molecules together. Let’s consider a hydrogen molecule, consisting of two hydrogen 
atoms. Each atom core with a charge of +1e is surrounded by an electron with charge -1e, 
making each atom neutral. Classically we might thus expect that separate hydrogen atoms 
don’t attract or repel each other, and therefore it’s not entirely obvious that a molecular 
bond would form. The reason for chemical bonds lies in quantum mechanics. 
 
From quantum mechanics (Chapter 9) we know that bound electron states are described by 
the Schrödinger Equation, where the electron position and energy are described by a 
wavefunction. Electron wavefunctions in a system of two attractive potentials (here the 
hydrogen cores) can occupy states where the electron probability between the atoms is 
zero, as well as states where the probability between the atoms is finite. The former state 
has a higher energy than the system of the separate hydrogen atoms, and is called an ‘anti-
bonding’ state, and the latter has a lower energy than the separate hydrogen atoms, and is 
called a ‘bonding state’. The energy of the bonding state depends on the distance between 
the atoms. The system energy as a function of separation between the atoms (bond length) 
is often described phenomenologically by the Morse Potential, which describes the 
potential energy of the molecule as a function of bond length r:  

𝑈(𝑟) = 𝐸௕ ൫1 − 𝑒ି௔ (௥ି௥బ)൯
ଶ
 (11.34) 

where Eb is the binding energy, r0 is the equilibrium bond length, and 𝑎 is a constant that 
describes how rapidly the energy varies with bond length. The graph below shows an 
example with Eb=250 meV, r0 = 1.15 Å, and a=1.5 Å-1.  
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Figure 11.1: Example of the Morse potential vs. inter-atomic separation r. 
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Note that when the atoms are far apart (large bond length) the potential is almost flat, 
corresponding to free atoms. As the atoms approach each other the energy is reduced, 
resulting in binding. Trying to push the positive cores closer together to within sub-
angstrom distances rapidly raises the energy, in part due to Coulomb repulsion. The system 
has a minimum energy at r=r0, and decreasing or increasing the bond length takes energy. 
The molecular bond thus acts as a ‘spring’ that tries hold the system at its equilibrium bond 
length. For small motion amplitude, the resulting restoring force is approximately 
described by Hooke’s law. Using the Morse potential from above we find a spring constant 
K given by 

𝐾 ൬
𝑁

𝑚
൰ = ቆ

𝑑ଶ𝑈(𝑟)

𝑑𝑟ଶ ቇ
௥ୀ௥బ

=  2 𝐸௕(𝐽) 𝑎(𝑚ିଵ)ଶ . (11. 
35) 

We thus expect that a diatomic molecule can undergo harmonic oscillation of the bond 
length at a frequency determined by the atomic masses and the bond strength. Before 
investigating how light can induce such molecular vibration, we first will introduce the 
concepts of normal coordinates and normal modes. 

Normal modes 

In order to model the movement of ion or atom positions we need to track each individual 
atom in three dimensions. Modeling the atom positions of a molecule containing N atoms 
would therefore require 3N coordinates, or 3N degrees of freedom. As systems become 
more complicated (large molecules or even solids), it becomes impractical to describe the 
motion of each atom separately. Instead we will describe vibration and rotation in terms of 
normal coordinates that represent motion patterns of several of the atoms at once. We will 
choose 3N such normal coordinates such that we can still describe an arbitrary arrangement 
of the atoms. The simplest possible system for which we can do such a mode decomposition 
is the diatomic molecule.  
 

 
Figure 11.2: Nitrogen molecule configuration described by the two atom positions and the 

position of two valence electrons  

An example of a diatomic molecule is the nitrogen molecule, N2. In order to describe all 
possible configurations of this molecule we need 3N = 6 coordinates. Instead of describing 
the atom positions (x1, y1, z1) and (x2, y2, z2) separately, it is more convenient to describe 
their joint motion or position in terms of normal coordinates. One such normal coordinate 
is the location of the center of mass, which requires three coordinates (x, y, z). The 
corresponding motion is ‘change of center of mass position’, or translation. A second 
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coordinate is the bond length, which requires one coordinate (r). The corresponding motion 
is ‘change of the bond length’, or vibration. Thus far we have used a total of 4 coordinates. 
The remaining two are needed for orientation. For this linear molecule, the orientation can 
be described by angles  and . The corresponding motion is ‘change in orientation’ or 
rotation. Note that we can now describe any arbitrary position of the diatomic molecule 
atoms, and we have again used a total of 3N=6 normal coordinates:  three for the center of 
mass, one for bond length, and two for orientation. For molecules that are not linear (e.g. 
that have two-dimensional or three-dimensional structure)  and  together don’t cover all 
possible orientations; we would need a third angular coordinate: rotation about a chosen 
molecular axis. 
 
We can now predict the number of vibrational normal modes (motion patterns) that can 
exist on particular molecules. Molecules with N atoms can be described with 3N 
coordinates. Out of these, 3 are needed for translation. In the case of linear molecules, we 
need 2 angular coordinates for orientation. That leaves 3N-5 normal coordinates for 
vibrational modes.  For 2D and 3D molecules we need 3 angular coordinates, leaving 3N-
6 vibrational coordinates. This means that most molecules will support many different 
vibrations, each with its own frequency. For example, a water molecule (H2O, three-
dimensional because the two H-O bonds are not collinear) will have three vibrational 
modes, and an ammonia molecule NH3 (also a 3D molecule) will support six vibrational 
modes. As a consequence, vibrational spectra rapidly become complicated. This also has a 
benefit: we can identify molecules by measuring their vibration spectra, since these spectra 
provide a lot of information about bond strength and atomic masses present in the molecule.  
 
Note that the chosen coordinates are independentxxv: we can have a molecule vibrate while 
its center of mass is stationary, but it can vibrate in exactly the same way while the molecule 
is moving (time dependent center of mass). This makes them "normal coordinates", and 
their corresponding time dependent motion "normal modes". 
 
The center of mass motion is rarely of interest in optics, except for the realization that 
center-of-mass motion can lead to Doppler shifts in absorption lines (Chapter 10). The 
more interesting coordinates for light-matter interaction are the vibrational and rotational 
normal coordinates of the molecule. Depending on the charge distribution on the molecule, 
these motions can introduce NIR and IR absorption features related to vibrational, 
rotational, and rovibrational transitions (combined rotation plus vibration) as discussed 
below. In addition, since the vibrating atoms in the molecule are surrounded by bound 
electrons, we will find that combined electronic plus vibrational transitions can also occur, 
the so called vibronic transitions.  
 

                                                 
xxv This is a first order approximation. For example, we will see later that fast rotation will stretch the 
molecule due to centrifugal forces, so the coordinates are not exactly independent.  
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Figure 11.3: Sketch of the normal coordinates of a diatomic molecule (blue) showing translation 

(three coordinates), vibration (one coordinate), and rotation (two coordinates) 

Atoms:  N 

Total nuclear coordinates:  3N 

3 translational coordinates (center of mass of molecule) 

Linear molecules Other molecules (2D, 3D) 

2 rotational modes 
3N-5 vibrational modes 

3 rotational modes 
3N-6 vibrational modes 

Number of normal coordinates needed to describe N-atom molecules 

Born-Oppenheimer Approximation 

To describe the rotation and vibration related optical response we would in principle have 
to model how the valence electrons follow the moving atom cores. Thankfully, the low 
mass of electrons means that they can respond quickly to forces (F=ma, so small mass 
implies a fast response). For many practical situations the electrons respond so quickly 
compared to the nuclear motions that we can consider the electrons as following the atom 
core positions "instantaneously" as the molecules vibrate or rotate. This assumption is 
called the Born-Oppenheimer approximation. 

Typical spectral ranges for vibrational and rotational transitions 

Most atoms contain many protons and neutrons, each of which weighs approximately 1 
amu  1.66 × 10ିଶ଻ 𝑘𝑔. Even the lightest atom (hydrogen) with a core mass of 1 amu is 
already 1800 times heavier than an electron which has a mass of 𝑚଴ = 9.1 × 10ିଷଵ𝑘𝑔.  
When subjected to similar forces, atoms thus accelerate much less than electrons, and 
consequently molecular vibrations occur at relatively low frequencies that are 10-100 
slower than typical electronic transition energies. Rotational energies are much lower than 
vibrational energies. The corresponding wavelength ranges are summarized below.  
 
Vibrational:  near infrared to long wave infrared, about 1-50 m 
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Rovibrational:  Combination of rotation and vibration changes, also at 1-50 m 
 
Purely rotational: Far infrared, about 100 - 500 m 

Dipole active modes 

As we saw, most molecules support several vibrational modes. It turns out that light can 
usually only directly excite a limited subset of all these modes, the so-called dipole active 
modes. This can be understood by first considering the effect of a static electric field on a 
molecule. If the molecule contains atoms with different total charge (core charge + electron 
charge), the field will push the positively charged atoms in one direction, and pull the 
negatively charged atoms in the opposite direction. The field can therefore stretch the 
molecular bond and increase the dipole moment on such molecule. If the field oscillates, it 
can induce an oscillatory motion and oscillatory dipole moment, corresponding to periodic 
vibration and/or rotation. Modes that can be excited by an oscillating electric field are 
called dipole active modes. From another perspective, a mode is dipole active when its total 
dipole moment changes during its vibration or rotation.  
 
The simplest dipole inactive mode is the stretch vibration of symmetric diatomic 
molecules. Diatomic (and thus linear) molecules have 3N-5=1 vibrational mode. If the 
molecule contains only one type of atom, e.g. O2, N2, etc., it does not have a net dipole 
moment because of symmetry: both atoms are the same, and there is no reason for one of 
them to attract electrons more than the other. Each identical atom has the same net charge 
of zero, and therefore light does not accelerate either of the atoms. The molecules can 
vibrate, but their dipole moment (zero) does not change while they do this.xxvi 
Consequently, the vibration is called dipole inactive. Light cannot cause move motion of 
the atoms, so there is no absorption related to vibration or rotation.  
 
The simplest possible example of a dipole active mode is the stretch vibration of a 
heterogeneous diatomic molecule. A diatomic molecule containing different atom types 
will still support only a single stretch vibration. However, the different atoms will have 
slightly different affinity for electrons, i.e. a different electronegativity, and as a result one 
of the atoms will end up being slightly negatively charged, while the other atom will be 
slightly positive. For example, in a HCl molecule, the chlorine atom has a net charge of 
approximately -0.2e, and the hydrogen atom has a net charge of approximately +0.2e. In 
this case the molecule has a net dipole moment, and stretching the molecule increases the 
dipole moment. The stretch vibration therefore has a time-dependent dipole moment, 
making this mode dipole active. In addition, since the HCl molecule has a permanent dipole 
moment electric fields can also exert a torque on the molecule, meaning its rotational 
modes are also dipole active. Or vice versa, as the molecule rotates, the (vectorial) dipole 
moment changes over time, and thus rotation of the HCl molecule is called dipole active.  
 
A slightly more complicated example is the carbon dioxide molecule, CO2. This molecule 
contains two collinear double bonds, schematically shown as follows: O=C=O. This is also 
considered a one-dimensional (linear) molecule. The oxygen atoms are more 
electronegative than the carbon atom, and therefore the molecule contains two polar bonds. 
However, since the negative oxygen atoms are symmetrically placed around the carbon 

                                                 
xxvi As it turns out, their electronic polarizability does change during vibration, resulting in a modulation of 
scattered light, resulting in an effect known as Raman scattering, discussed later in this Chapter.  
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atom, the net dipole moment is still zero. Another way of saying this is that the dipole 
moments of the two bonds are pointed in opposite direction (outward with equal 
magnitude), and their sum is zero. During the rotation of a CO2 molecule the net dipole 
moment remains zero, and therefore purely rotational motion of CO2 is not a dipole active 
mode, and light cannot excite a purely rotational motion in CO2. We will see later that light 
can excite a vibration while simultaneously changing the rotation of CO2, called a 
rovibrational transition.    
 
The CO2 molecule does not have a net dipole moment, but we noted that it does have charge 
separation (different net charge on different atoms). As a result some of its vibrational 
modes turn out to be dipole active. Let’s consider all of its normal modes. Recall, to 
describe nuclear motion on the linear CO2 molecule we need two rotational coordinates 
and 3N-5 = 4 vibrational modes. The image below shows these modes. The top mode is 
called the symmetric stretch mode, with the oxygen atoms moving in opposite direction 
while the carbon atom is stationary. During this vibration the two bonds both have a time-
dependent dipole moment, but the sum of these dipole moments remains zero. Or 
alternatively, at each time during the vibration the average position of the negative charge 
is identical to the average position of the positive charge. This vibration is therefore dipole 
inactive. The middle image shows a mode known as the asymmetric stretch vibration. In 
this mode the oxygen atoms move in the same direction, while the carbon atom moves in 
the opposite direction. In this mode whenever the left bond stretches (and therefore has an 
increasing dipole moment) the right bond compresses (and therefore has a reducing dipole 
moment). The result is that a net dipole moment develops during this vibration, making 
this mode dipole active. An alternative viewpoint is that the negative atoms move in one 
direction, and the positive atom in the other. The average negative and positive charge 
positions move in different directions, meaning that dipole moment is changing. Finally, 
the bottom image shows a vibration known as a bending mode. Again the oxygen atoms 
move together in one direction, and the carbon atom in the opposite direction. This too 
corresponds to a time dependent dipole moment, and the bending mode of CO2 is therefore 
also a dipole active vibration. This bending mode can occur in-plane and out-of-plane, so 
we need two of these normal modes to describe bending in an arbitrary direction. This 
mode therefore counts for two normal modes, with identical energy. Such modes with the 
same energy are called degenerate.  
 
One important note: changing the length of a bond typically takes more energy than 
bending a bond. That means that stretch vibrations typically occur at higher energy than 
bending vibrations.  
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Figure 11.4: the vibrational modes of the CO2 molecule. The top symmetric stretch is dipole 
active, while the asymmetric stretch (middle) and bending mode (bottom) are dipole active.  

Classical description of vibrations in molecules and solids 

In the following sections we will describe vibrations on molecules and in solids using an 
entirely classical oscillator model.  

Vibration Modes in a Diatomic Molecule 

As discussed above in the section ‘molecular bonds’, the energy of a molecule depends on 
the bond length. Any changes in the bond length result in a restoring force. We can thus 
attempt to describe vibrating molecules by a system of masses held together by springs. To 
find allowed vibration frequencies and their associated motion patterns (normal modes) we 
solve the equation of motion for all atoms at the same time, and look for oscillatory 
solutions with a single oscillation frequency. In three dimensional large molecules, a 
normal mode can be some complicated vectorial motion pattern where atoms oscillate 
along different directions with different amplitudes. Here we will discuss the simple case 
of a heterogeneous diatomic molecule, and assume that all motion will be along a single 
dimension (for example the x-axis), meaning we can make use of scalar rather than 
vectorial position coordinates.  
 
We consider a diatomic molecule with masses m1 and m2, positions x1 and x2 relative to 
the equilibrium position of the left and right atom respectively, and held together by a 
chemical bond with a spring constant K. When x2 > x1, the spring has lengthened, resulting 
in a positive force on atom 1, and a negative force on atom 2. The equation of motion for 
the two atoms thus becomes 

𝑚ଵ𝑥̈ଵ = 𝐾(𝑥ଶ − 𝑥ଵ) 

𝑚ଶ𝑥̈ଶ = −𝐾(𝑥ଶ − 𝑥ଵ) 

We are looking for a normal mode with a single frequency, so we will substitute 𝑥ଵ(𝑡) =
𝑥ଵ(𝜔)𝑒௜ఠ௧ and similar for x2. Importantly, we thus demand that both atoms oscillate at the 
same frequency. For simplicity of notation here we omit the complex conjugate which 
would be needed to obtain real amplitudes. Substituting this harmonic motion into the 
EOM, taking the time derivative, and dividing out all common exponential terms, we end 
up with    

−𝑚ଵ𝜔ଶ 𝑥ଵ(ω) = 𝐾൫xଶ(ω) − xଵ(ω)൯ 

Carbon

Oxygen
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−𝑚ଶ𝜔ଶ xଶ(ω) = −𝐾൫xଶ(ω) − xଵ(ω)൯ 

Grouping all x1 and x2 terms and moving them to the left results in  

[−𝑚ଵ𝜔ଶ  + K]𝑥ଵ(ω) − Kxଶ(ω) = 0 

−Kxଵ(ω) +  [−𝑚ଶ𝜔ଶ  + K]𝑥ଶ(ω) = 0 

This can be written as a matrix relation 

൬
𝐾 − 𝑚ଵ𝜔ଶ −𝐾

−𝐾 𝐾 − 𝑚ଶ𝜔ଶ൰ ൤
𝑥ଵ(ω)

𝑥ଶ(ω)
൨ = 0 

This equation has solutions if the determinant of the matrix is zero, corresponding to  

(𝐾 − 𝑚ଵ𝜔ଶ)(𝐾 − 𝑚ଶ𝜔ଶ) − 𝐾ଶ = 0 

⇒ −𝐾𝑚ଶ𝜔ଶ − 𝐾𝑚ଵ𝜔ଶ + 𝑚ଵ𝑚ଶ𝜔ସ = 0 

⇒ 𝜔ଶ(−𝐾(𝑚ଵ + 𝑚ଶ) + 𝑚ଵ𝑚ଶ𝜔ଶ) = 0 

This has one trivial solution,  = 0, corresponding to an absence of relative motion, which 
does not correspond to a vibrational mode. If 0, we can divide out the term 2 and find 
a solution if the remaining term between brackets is zero, resulting in  

𝜔ଶ = 𝐾 
𝑚ଵ + 𝑚ଶ

𝑚ଵ𝑚ଶ
= 𝐾 ൬

1

𝑚ଵ
+

1

𝑚ଶ
൰  

This is often written in terms of a quantity known as the reduced mass , defined by   

1

𝜇
=

1

𝑚ଵ
+

1

𝑚ଶ
  

We have thus found an allowed normal mode with a frequency  

𝜔௩௜௕ = ඨ
𝐾

𝜇
  

To find the corresponding motion pattern associated with this normal mode, we substitute 
the obtained frequency in our trial solutions for x1(t) and x2(t) and substitute these into one 
of the EOM gives 

𝑥ଵ(ω)

xଶ(ω)
= −

𝑚ଶ

𝑚ଵ
  

We see that the mode with this frequency has a motion pattern in which atom 1 and atom 
2 move in opposite directions, which stretches the bond. We have found a stretch vibration. 
If m1<m2 then atom 1 has a larger motion amplitude than atom 2. Note that we don’t know 
anything about the total amplitude: all we know is that at the stretch vibration frequency 
the atoms will be moving in anti-phase, with a relative amplitude given by the mass ratio.  
 
Together with Eb and a from the Morse potential for the H-Cl bond we can now predict the 
vibration resonance frequency of the HCl molecule. The chemical bond determines the 
spring constant K, and we can look up the atomic masses to find m1 and m2, giving us , 
which together with K gives us vib.  
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Some interesting limiting cases: if m2 >> m1 we find x1 >> x2, i.e. atom 2 moves very little. 
In this case the reduced mass approaches   m1, and the vibration frequency becomes 
𝜔௩௜௕ ≈ ඥ𝐾/𝑚ଵ corresponding to a single mass on a spring with spring constant K, 
attached to an immobile object. This is reasonable for large m2.  
 
Another useful limiting case is the situation where both masses are identical with 
m1=m2=m. Note that this would correspond to a molecule with no charge separation, and 
therefore the mode would be dipole inactive. For such molecule we find that  = m/2 

resulting in 𝜔௩௜௕ ≈ ඥ𝐾/(𝑚/2) = ඥ2𝐾/𝑚. This looks like the vibration frequency of an 
atom with half the mass on a spring with spring constant K, hence the term ‘reduced mass’ 
for . This result can be understood by realizing that the masses undergo correlated motion. 
For every x of motion of atom 1, the spring lengthens by 2x, since the other atom is 
moving in the opposite direction. The restoring force is thus twice as large as expected 
based on x1, resulting in a spring that appears twice as strong.  
 
With the analysis developed above we can make some predictions about the vibration 
frequencies of the CO2 molecule. For the symmetric stretch we see that both O atoms 
oscillate on a fixed central C atom, so we anticipate a symmetric stretch frequency of  

𝜔ௌௌ = ඨ
𝐾௅

𝑚ை
  

where the subscript L indicates that this is for longitudinal motion. As argued earlier, this 
mode is dipole inactive. For the dipole active asymmetric stretch vibration we see that there 
is a total mass 2𝑚ை moving to the right and a mass 𝑚஼ moving to the left. If we define a 
corresponding reduced mass for this particular motion pattern 

1

𝜇஼ைమ

=
1

𝑚஼
+

1

2𝑚ை
  

and noting that the forces on the C atom are twice as large as expected for a single bond, 
we anticipate an asymmetric stretch vibration frequency of  

𝜔஺ௌ = ඨ
2𝐾௅

𝜇஼ைమ

  

Note that this 𝜇஼ைమ
< 2𝑚ை and therefore 𝜔஺ௌ > 𝜔ௌௌ. 

 
Finally, the dipole active bending mode is expected at lower frequency because of the fact 
that the ‘transverse spring constant’ KT associated with bond angle deformation (‘bending’) 
is generally lower than KL.  

Quantum description of light interaction with rotation and vibration  

Unlike vibrational modes, rotational modes have no resonance in the classical picture. We 
might thus expect that molecules con rotate at arbitrarily low speeds, and we classically we 
don’t expect absorption resonances from rotations. And yet, such rotational absorption 
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resonances exist. To look understand absorption resonances due to rotational modes, we 
must consider quantum mechanics. 
 
Classically the rotational energy of a rotating object can be varied continuously by 
changing the angular frequency of motion, as given by 

 
I

L

I

I
IErot 22

22
2

2
1 

 , (13.1) 

where L is the angular momentum, and I is the moment of inertia. However, since moving 
mass has a wave-like behavior (See Chapter 9), allowed sustained rotational motion 
requires that one roundtrip of the molecule fits an integer number of waves. The result is a 
quantized rotational energy spectrum, with discrete energy Eigenvalues 𝐸௥௢௧

௃  given by 

rot

J
rot

JJ

J
I

JJ
E





)1(

...,2,1,0,
2

)1( 2







 (13.2) 

Since J is an integer, the rotational energy levels will end up separated by multiples of the 
quantity ℏ𝜔௥௢௧ so this quantity is not “the rotational energy”.  Note that 𝜔௥௢௧ follows from 
the moment of inertia according to 𝜔௥௢௧ = ℏ/(2𝐼). In the literature instead of using the 
quantity 𝜔௥௢௧ people often use 𝑣̅௥௢௧(𝑐𝑚ିଵ) = 1/𝜆(𝑐𝑚). Both  and v are linear in energy. 
To convert from 𝜔௥௢௧ to vrot, simply convert the energy ℏ𝜔௥௢௧ to the corresponding 
wavelength in cm, and take the inverse. In this case, 

rot
J
rot hcJJE )1(  . (13.3) 

Sometimes rot  is labeled as “B”.xxvii  Note that J(J+1) is a quadratic in J, so that the spacing 

between energy levels increases with J. For a molecule with an angular momentum 
quantum number J, the distance to the next higher energy level is: 

 
 

rot

rot

rot
JJ

hcJ

hcJJJJ

hcJJJJEE






)1(2

)23

)1()2)(1(
22

1






 (13.4) 

We see that the energy level spacing increases linearly with J. This observation, together 
with a selection rule for rotational transitions, determines the kind of rotational and 
rovibrational absorption spectra that are commonly observed. We already saw an example 
of a quantum mechanical selection rule in Chapter 9, where light could only cause 
transitions between states with opposite parity. For rotational transitions, we have a 
different selection rule. Optically induced changes of J must follow the rule 

1,0 J . (13.5) 

                                                 
xxvii For higher rotational energy states, centrifugal force stretches the molecule and this lowers the energy, 
which may be written as 𝐸௥௢௧

௃
= 𝐽(𝐽 + 1)ℎ𝑐𝐵 − 𝐽ଶ(𝐽 + 1)ℎ𝑐𝐷, but we will not consider this correction in this 

course. 
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Light incident on a polar molecule (i.e. with a net dipole moment) can increase the rotation 
of the molecule (‘speed up its rotation’) by increasing J by one. In an extremely cold gas 
with most molecules in the J=0 state we might expect that light can only cause a transition 
from J=0 with energy 𝐸௥௢௧

௃
= 𝐽(𝐽 + 1)ℏ𝜔௥௢௧ = 0 to a state with J=1 with energy 𝐸௥௢௧

௃
=

𝐽(𝐽 + 1)ℏ𝜔௥௢௧ = 2ℏ𝜔௥௢௧ . We thus would expect exactly one absorption peak at energy 
2ℏ𝜔௥௢௧. But, if some molecules are already rotating, e.g. with J=1, light could cause a 
transition from J=1 with energy 𝐸௥௢௧

௃
= 2ℏ𝜔௥௢௧ to J=2 with energy 𝐸௥௢௧

௃
= 𝐽(𝐽 +

1)ℏ𝜔௥௢௧ = 6ℏ𝜔௥௢௧ . These molecules would add an absorption line at energy 4ℏ𝜔௥௢௧ .  We 
see: molecules that rotate faster absorb at higher energy. For a hot gas with molecules in 
various rotational states we thus expect to see an absorption spectrum with peaks that are 
evenly spaced, located at multiples of 2ℏ𝜔௥௢௧ and therefore spaced by 2ℏ𝜔௥௢௧. In the 
sketch below we see an example of such a purely rotational absorption spectrum and one 
of the responsible transitions indicated by the red arrow. Each absorption peak corresponds 
to molecules with a distinct initial value of J.  
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Figure 11.5 

Typical rotational transition energies 

For molecular Hydrogen, H2, hcB = 5.8 x 10-22 J, so the lowest energy transition it can 
make is from E0

rot=0 to E1
rot = 2(J+1) hcB = 1.16 X 10-21 Joule or 7.25 meV.  The 

corresponding free-space wavelength is 171 m, which lies in the far infrared (FIR) region. 
Although H2 does not exhibit dipole-allowed rotational transitions, the calculated transition 
energy represents an estimate for the energy of rotational absorption lines of other 
molecules. In general, these energies will be lower, since H2 is the lightest possible 
molecule and hence has the smallest moment of inertia.  

Thermal population of rotational states 

When comparing the calculated energy of the lowest H2 rotational transition to the thermal 
energy, kT, at room temperature (~25 meV) it is clear that several rotational levels in H2 
will be populated at room temperature. But the population of levels reduces exponentially 
with energy, resulting in an exponential drop-off in the strength of the absorption lines with 
frequency.  
 

()

0     2hcB     4hcB    6hcB    8hcB    10hcB   12hcB         Energy

J=4 to   
J=5 

J=0 to 
J=1 
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Figure 11.6 

Vibrational transitions 

The approximation that atoms in a molecule experience a linear restoring force turns out 
to be a reasonably good one.  This means that the potential that the atoms sit in is close to 
parabolic, for small displacements.  The behavior of the bond length can be modeled by a 
quantum harmonic oscillator, for which the solutions are well known: 

Evib = (v + ½)0 ,    v = 0, 1, 2, …  (13.6) 

with v the vibrational quantum number, and with  /0 K  the classical resonance 

frequency. For a perfectly parabolic potential, the energy levels are equally spaced.  The 
absorption spectrum is again affected by a selection rule:  v =  1. Since the energy level 
spacing is fixed, there is only a single absorption frequency, regardless of the initial state 
of the system. However, anharmonicity of the potential (i.e. the potential is not exactly 
parabolic, see the Morse potential earlier in this Chapter) results in a slight relaxation of 
this rule, which can result in weakly-allowed excitation of multiple vibration quanta 
(v=2, 3), etc. Anharmonicity also results in slightly unevenly spaced energy levels, as 
shown below: 
 

 
Figure 13.7 

()

0     2hcB     4hcB    6hcB    8hcB    10hcB   12hcB         Energy
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For a polyatomic molecule, we have multiple resonances corresponding to the different 
vibration modes of the molecule:  

Evib = (v1 + ½)1 + (v2 + ½)2 + … (13.7) 

where there are 3N-5 or 3N-6 vibrational modes, and there is one absorption/emission 
resonance frequency for each mode. 

Vibrational rotational transitions 

Whenever there is a dipole active vibrational mode, light can also exert a torque on the 
molecule during the vibration. As a result, excitation of vibration almost always also 
changes the amount of rotation of the molecule. Since vibration energies are much larger 
than rotation energies, the change of rotation has relatively little effect on the transition 
energy. In other words: the energies of combined vibrational and rotational transitions 
(rovibrational transitions) will be close to those of a typical vibration energy ℏ𝜔௩௜௕. Since 
the rotation may increase or decrease, the total energy needed for the transition may be a 
bit more or a bit less than ℏ𝜔௩௜௕, and we thus expect to see absorption lines slightly below 
and above the vibrational energy. The selection rules for these transitions are the same as 
discussed above: rovibrational transitions require Δ𝑣 = ±1  (and sometimes ±2).   
 
For J = -1, this is called the  “P-branch” 
For J = 0   “Q-branch”  (often forbidden) 
For J = +1                             “R-branch” 
 

  
Figure 13.8 

Above are the vibration-rotation transitions for HCl, showing the strongly allowed v = 1 
(fundamental band), along with the weakly allowed v = 2 (overtone band). The associated 
absorption spectrum for HCl is shown below. 
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Coupled electron/vibration transitions in molecules 

 
Figure 11.9 

Similarly, electronic transitions can terminate in different vibrational and rotational states, 
resulting in broad electronic absorption/emission bands.  There are no simple selection 
rules here, but the Franck-Condon principle states that the vibrational coordinate should 
not change during a transition, (see below).  Since the electrons have highest probability of 
being at the extreme positions of their excursions, this controls which transitions are most 
possible, which strongly affects the shape of the absorption band.  
 

 
Figure 13.10 
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Due to the Franck-Condon principle and the tendency for molecules to relax to the bottom 
of the vibration bands, the emission spectrum is shifted to longer wavelengths than the 
absorption spectrum, and the emission band usually looks like a mirror image of the 
absorption band 
 

 
Figure 11.11 

Raman active modes 

Modes that are not dipole-active can also interact with electromagnetic radiation indirectly.  
For example, vibrational and rotational modes in H2 are not dipole active, but if an electric 
field is applied, the electrons move in response to the field, thus polarizing the entire 
molecule.  If the electronic polarizability depends on the molecule length (or orientation), 
the induced dipole moment with frequency i will be modulated by the vibrational (or 
rotational) mode: a dipole active mode has effectively been induced through the electronic 
polarization.  This leads to “Raman Scattering”, and this type of dipole inactive mode is 
sometimes termed “Raman Active”.  The effect of the configuration dependent electronic 
polarizability is that a high-frequency electromagnetic wave can interact with the rotational 
or vibrational modes.  This can result in the rotational or vibrational state of the molecule 
being changed by the incident radiation.  This is analyzed classically in Hopf & Stegeman, 
chapter 3, but we will not discuss the analysis in this class in detail.  Usually, Raman 
scattering is described quantum mechanically as shown in the following diagram: 
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Figure 11.12 

An incident wave with frequency i, is incident on the molecule, polarizing the molecule 
through a dipole-active mode (e.g. electronic polarization). There is no absorption, as i is 
usually far from the resonance of the dipole-active mode.  The dashed line is not a real 
state, but referred to as a “virtual state” (dashed line), which is just to say that the molecule 
is being driven at the incident frequency, i without absorption.  When in the virtual state, 
the molecule can interact with the electric field, and may gain (or lose) a quantum of 
vibrational or rotational energy from (or to) the EM field.  Hence, the scattered light with 

frequency s will be emitted with either a smaller photon energy , s = i - , which 

is referred to as Stokes scattering or with a larger photon energy, s = i + , which is 

referred to as Anti-Stokes scattering.  We will discuss later what a “quantum of vibrational 
or rotational energy” is, when we look at quantum mechanical variations from classical 
models. 
 
As a simplified example of how these new frequencies are generated, we will consider a 
di-atomic molecule that has a bond length that oscillates in time according to  

𝐿(𝑡) = 𝐿଴ + Δ𝐿 × cos (𝜔௩௜௕𝑡) 

Here vib is the frequency of the stretch vibration, which we assume lies in the near-
infrared. Now let’s assume that the polarizability of this molecule to first order depends on 
the bond length according to  

𝛼(𝑡) = 𝛼଴ + (𝐿(𝑡) − 𝐿଴)
𝑑𝛼

𝑑𝐿
 

This equation shows that the polarizability is approximately 0, but varies as L(t) deviates 
from L0. The leads to a time dependent polarizability given by  
 

𝛼(𝑡) = 𝛼଴ + ΔL × cos(𝜔௩௜௕𝑡)
𝑑𝛼

𝑑𝐿
≈ 𝛼଴ + Δα × cos(𝜔௩௜௕𝑡) 

 
with  the amplitude of the polarizability variations. Let’s look at the dipole moment µ(t) 
that develops under monochromatic illumination of this molecule:  

i

s


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𝐸(𝑡) = 𝐸଴ cos(𝜔௘௫௖𝑡) 

with exc the angular frequency of the incident laser irradiation. This gives rise to a time 
dependent dipole moment given by:  

𝜇(𝑡) = 𝛼(𝑡) × 𝐸(𝑡)
= (𝛼଴ + Δα × cos(𝜔௩௜௕𝑡)) × 𝐸଴ cos(𝜔௘௫௖𝑡)
= 𝛼଴𝐸଴ cos(𝜔௘௫௖𝑡) + 𝐸଴Δα cos(𝜔௩௜௕𝑡) cos(𝜔௘௫௖𝑡)  

The first term is simply the induced dipole moment at the laser frequency, which gives rise 
to normal dipole radiation (Rayleigh scattering). More importantly, the last term contains 
both the vibration and the excitation frequency, and can be written as:  

Δ𝜇(𝑡) = 𝐸଴Δα × cos(𝜔௩௜௕𝑡) cos(𝜔௘௫௖𝑡)

=
1

4
𝐸଴Δα൫𝑒ି௜ఠೡ೔್௧ +  𝑒ା௜ఠೡ೔್௧൯൫𝑒ି௜ఠ೐ೣ೎௧ +   𝑒ା௜ఠ೐ೣ೎௧൯

=
1

4
𝐸଴Δαൣ𝑒ି௜(ఠೡ೔್ାఠ೐ೣ೎)௧ + 𝑒ି௜(ఠೡ೔್ିఠ೐ೣ೎)௧ + 𝑒ା௜(ఠೡ೔್ିఠ೐ೣ೎)௧ + 𝑒ା௜(ఠೡ೔್ାఠ೐ೣ೎)௧൧

=
1

2
𝐸଴Δα[cos((𝜔௘௫௖ − 𝜔௩௜௕)𝑡) + cos((𝜔௘௫௖ + 𝜔௩௜௕)𝑡)] 

We thus have found: 

𝜇(𝑡) = 𝛼଴𝐸଴ cos(𝜔௘௫௖𝑡) +
1

2
𝐸଴Δα[cos((𝜔௘௫௖ − 𝜔௩௜௕)𝑡) + cos((𝜔௘௫௖ + 𝜔௩௜௕)𝑡)]  

This represents a dipole moment that oscillates predominantly at the frequency of the 
incident radiation, but with two small contributions that oscillate at slightly lower and 
slightly higher frequency than the incident laser light. These frequencies exc–vib and  
exc+vib correspond respectively to the Stokes shifted and the anti-Stokes shifted lines.  
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Chapter 12 – Debye model of the optical properties of polar liquids  
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
In the preceding Chapters we modeled the optical response of atoms in dilute gases with 
the Lorentz model, and described the response of solids using the Lorentz model (bound 
electrons, linear and nonlinear response) and the Drude model (free electrons). A state of 
matter that we have not discussed yet is the liquid. This Chapter introduces the Debye 
model, which can be used to describe the low-frequency (‘microwave’, far infrared, GHz) 
response of polar liquids. 
 
Liquids are composed of molecules or atoms that are densely packed (similar densities as 
solids), but the molecules still have the freedom to move around and reorient. Since the 
molecules in the liquid contain bound electrons, we expect that light can excite the 
electrons, just like in insulators. This results in optical absorption at visible and UV 
frequencies, which we can attempt to describe with the Lorentz model. In addition, liquids 
containing molecules that have a net dipole moment, for example water, show another type 
of polarization response at low frequency, related to the slow field-induced alignment of 
the molecules in the liquid.  To model this kind of electromagnetic response we will make 
use of results from statistical mechanics. 
 
 

 
 

Figure 12.4:  Schematic view of densely packed water molecules, and (right) illustration of the net 
dipole moment of a water molecule. The oxygen atom is negatively charged, which together with 

the bond angle results in a net dipole. 

Hindered rotational modes   

In Chapter 11 we saw that polar molecules (molecules with a net dipole moment) in a gas 
could be made to rotate by infrared light. This gives rise to a series of discrete and narrow 
absorption lines, related to the various quantum mechanical rotational states. These 
absorption lines could be sharp because the molecular rotation could continue freely for a 
long time, corresponding to well-defined energies. In a liquid, the situation is quite 
different.  
 
Liquids are dense, with densities similar to those of solids. In molecular liquids, for 
example water, the molecules have the freedom to reorient since they are not chemically 
bound to their neighbors. However because of the high density, collisions with neighbors 
occur very frequently. As a result, in liquids we do not see sharp lines related to continued 
rotation such as we saw in gases. The orientation of molecules in liquids is continually 
being changed by collisions with neighbors. The number of collisions will depend on 
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temperature, with high temperature causing more collisions and faster randomization of 
the molecular orientation. If the collision frequency is similar to or higher than the rotation 
frequency, we call the rotation hindered.  
 
Despite the thermal randomization of the molecular orientation, we can still see light-
induced dipole moment related to the in liquids containing polar molecules. As we will see, 
electric fields can partly align polar molecules resulting in a net polarization, while 
collisions are counteracting this alignment. The result is a low-frequency polarization that 
increases with field strength, and that decreases with temperature. In the following we 
derive the corresponding susceptibility with a model known as the Debye model.  

Molecular alignment in polar liquids 

To evaluate light-induced polarization in polar liquids, we will make use of 
thermodynamics to describe the probability of particular molecular orientations. First we 
will evaluate the potential energy of a polar molecule as a function of orientation relative 
to an applied electric field. Consider a molecule with a permanent dipole moment of 
magnitude p0 and oriented at an angle  away from the applied electric field. It can easily 
be shown that the potential energy U of this molecule will depend on the angle as  

𝑈(𝜃) = −𝑝଴E cos (𝜃) (12.1) 

We will call this potential energy contribution the interaction potential. For now, we 
assume that E is a constant field, but note that our interaction potential U does not depend 
on this assumption. We see that a molecule that is aligned with the field (=0) has the 
lowest energy. Rotating the molecule and moving the plus charge against the electric force 
takes work, raising the potential energy.  
 
 

 
Figure 12.13: Polar molecule in applied electric field. 

In classical (non-quantum mechanical) thermodynamics the probability 𝑓(𝐸௧௢௧) for 
observing a particular state with total energy 𝐸௧௢௧ is described by Boltzmann statistics: 

𝑓(𝐸௧௢௧) ∝ 𝑒ିா೟೚೟/௞ಳ் (12.2) 

with kB the Boltzmann constant. High energy states are less likely to occur than low energy 
states. We can use Boltzmann statistics to determine the probability of finding aligned 
molecules, which will in turn allow us to find the total polarization vs. temperature.  
 
The Boltzmann factor 𝑒ିா೟೚೟/௞ಳ் informs us about the (relative) probability for finding a 
given orientation, but note that this orientation will be described by both the ‘misalignment 
angle’  as well as the angle . To find a description of the total dipole moment, we will 
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consider all possible orientations , , and add up (integrate) their contribution to the total 
polarization.  
 

  

Figure 12.5: possible dipole orientations within a range d𝜃 

A molecule with orientation 𝜙, 𝜃 contributes a projected dipole moment along the field of 
𝑝 ⋅ 𝐸෠ = 𝑝଴ 𝑐𝑜𝑠(𝜃) with 𝐸෠ the field unit vector. The average dipole moment along the field 
contributed by a molecule is thus given by  

⟨ 𝑝 ⟩ ∝ ඵ 𝑝଴ 𝑐𝑜𝑠(𝜃) 𝑓൫𝑈(𝜃, 𝜙)൯ sin 𝜃 𝑑𝜙𝑑𝜃

థ,ఏ

 (12.3) 

where the term sin() is required in polar coordinates to properly add up all possible solid 
angles. Now note that the interaction potential U does not depend on , meaning that the 
integrand doesn’t depend on . The integral over  thus simply adds a factor 2, reducing 
our double integral to the following single integral:  

⟨ 𝑝 ⟩ ∝ න 𝑝଴ 𝑐𝑜𝑠(𝜃) 𝑓൫𝑈(𝜃, 𝜙)൯ 2𝜋 sin 𝜃 𝑑𝜃

ఏ

 (12.4) 

The term 𝑓൫𝑈(𝜃, 𝜙)൯ 2𝜋 sin 𝜃 is the relative probability of finding a molecule at angle , 
which we can write as P(). The term  2𝜋 sin 𝜃 effectively acts as a ‘orientational density 
of states’, saying that there are not many orientations (‘states’) with perfect alignment, but 
many different orientations that are misaligned by e.g. 90. Substituting Boltzmann 
statistics gives us  

𝑃(𝜃) = 𝑒ି௎/௞ಳ் 2𝜋 sin 𝜃 = 𝑒௣బ୉ ୡ୭ୱ (ఏ)/௞ಳ் 2𝜋 sin 𝜃 (12.5) 

Our projected dipole moment as written above is only a relative measure, because our 
expression for the angular probability distribution was not normalized to a total probability 
of 1. To get an absolute result, we divide our result by the integrated ‘relative probability’, 
givingxxviii  

                                                 
xxviii Note that this normalization resolves a question that you might have had: we don’t know the ‘absolute 
energy’ of our molecule, only changes in its energy related to its orientation, so how can we evaluate the 
Boltzmann factor. It turns out that adding an offset to our energy U() is equivalent to multiplying by a 
constant factor. This constant factor will always be divided out in the normalization process, whatever its 
actual numerical value. The result is thus independent of absolute energy, and only depends on angle-
dependent changes to the energy. 
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⟨ 𝑝 ⟩ ∝
∫ 𝑝଴ 𝑐𝑜𝑠(𝜃) 𝑃(𝜃) 𝑑𝜃

ఏ

∫ 𝑃(𝜃) 𝑑𝜃
ఏ

. (12.6) 

The total integral for finding the average dipole moment per molecule is now  

⟨ 𝑝 ⟩ =
∫ 𝑝଴ 𝑐𝑜𝑠(𝜃) 𝑒௣బ୉ ୡ୭ୱ (ఏ)/௞ಳ் 2𝜋 sin 𝜃  𝑑𝜃

ఏ

∫ 𝑒௣బ୉ ୡ୭ୱ (ఏ)/௞ಳ் 2𝜋 sin 𝜃  𝑑𝜃
ఏ

. (12.7) 

Realizing sin(𝜃) 𝑑𝜃 = −𝑑(cos(𝜃)) and renaming cos() as q we find 

⟨ 𝑝 ⟩ = −𝑝଴

∫ 𝑞 𝑒௫ ୯ 𝑑𝑞
ିଵ

௤ୀଵ

∫ 𝑒௫ ୯ 𝑑𝑞
ିଵ

௤ୀଵ

= 𝑝଴

∫ 𝑞 𝑒ି௫ ୯ 𝑑𝑞
ଵ

௤ୀିଵ

∫ 𝑒ି௫ ୯ 𝑑𝑞
ଵ

௤ୀିଵ

. (12.8) 

Where we have substituted x = p0E/kBT. The ratio of integrals has a solution known as the 
Langevin function: 

𝐿(𝑥) = coth(𝑥) −
1

𝑥
 (12.9) 

Substituting x = p0E/kBT we have found an average dipole moment per molecule of  

⟨ 𝑝 ⟩ = 𝑝଴ ൤coth ൬
1

𝑥
൰ − 𝑥൨ = 𝑝଴ ൤coth ൬

𝑝଴𝐸

𝑘஻𝑇
൰ −

𝑘஻𝑇

𝑝଴𝐸
൨. (12.10) 

The Langevin function is shown below. Note that we observe several physically reasonable 
results. For small applied fields (small x) we have small average dipole moment. Increasing 
the field results in more alignment. Increasing the temperature reduces x, lowering the 
average dipole moment. This makes sense: at higher temperature, the molecules undergo 
more collisions, randomizing their alignment. Finally, for very strong fields the 
polarization saturates. This also makes sense: when all molecules are completely aligned, 
there is no further angle change that can increase the average dipole moment per molecule.  
 

 

Figure 12.6: The Langevin function. Note the linear section for small argument, and the 
saturation for large argument.  

For small x (low field and/or high temperature) we see that the Langevin function is 
approximately linear in field strength. A Taylor expansion shows that the slope in x is equal 
to 1/3. For small fields we can thus write  
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⟨ 𝑝 ⟩ =
1

3
𝑝଴

𝑝଴𝐸

𝑘஻𝑇
=

𝑝଴
ଶ

3𝑘஻𝑇
𝐸. (12.11) 

The total dipole moment per unit volume is now simply 

𝑃 = 𝑁
𝑝଴

ଶ

3𝑘஻𝑇
𝐸. (12.12) 

with N the number of molecules per unit volume, assuming these are all the same polar 
molecules with permanent dipole moment p0.  Comparing with 𝑃 = 𝜖଴𝜒𝐸 we find a low-
frequency susceptibility contribution of  

𝜒(0) =
𝑁

𝜖଴

𝑝଴
ଶ

3𝑘஻𝑇
. (12.13) 

due to field-induced (partial) alignment of the polar molecules.  
 
Note that our susceptibility depends quadratically on the dipole moment. This makes sense: 
each molecule contributes dipole moment proportional to p0, but in addition, our ability to 
align the molecule (the ‘torque’ we can apply on each molecule) also depends linearly on 
p0. Together these two effects give the observed quadratic dependence on dipole moment.    
 
So far, we have considered a static electric field. In this case it is easy to understand that 
thermal equilibrium following the Boltzmann distribution can develop. To understand the 
response to time-varying fields we need to consider the dynamics of the orientation 
process. Note that our expression for polarization represents a dynamic equilibrium: the 
electric field tries to align the molecules, while collisions are randomizing their orientation. 
If we were to suddenly turn off the field, the molecules will gradually return to an isotropic 
(randomized) orientational distribution with zero average dipole moment. This behavior is 
addressed phenomenologically in the Debye model. This model assumes that the 
randomization of the molecular alignment takes place on a time scale described by the 
rotational correlation time . Upon suddenly turning off the applied field, the polarization 
is expected to change according to  

𝑑𝑃ሬ⃗

𝑑𝑡
= −

𝑃ሬ⃗

𝜏
  ⇒    𝑃ሬ⃗ (𝑡) = 𝑃ሬ⃗ (0)𝑒ି௧/ఛ   (12.14) 

Note that this relation simply assumes that the relaxation process leads to an exponential 
decay. This is thus only a phenomenological description of the relaxation process, ignoring 
the details of the relaxation process. The rotational correlation time   is linked to the 
viscosity  of the liquid according to 𝜏 = 𝜂𝑉/𝑘஻𝑇  with V the volume per molecule. For 
water (H2O) the rotational correlation time is approximately 40 ps. This already tells us 
that water molecules will not be able to react strongly to fields that change faster than once 
per 40 ps, so we expect orientational polarization effects to occur at frequencies below tens 
of GHz (wavelength at least several centimeters).  

Optical response in Debye description 

Previously we derived the susceptibility for zero frequency, and we have a relation 
describing the polarization relaxation in zero externally applied field. We can now 
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construct a relation that provides the correct static response and the correct exponential 
response to sudden changes of the field:  

𝜏
𝑑𝑃ሬ⃗

𝑑𝑡
+ 𝑃ሬ⃗ =

𝑁𝑝଴
ଶ

3𝑘஻𝑇
 𝐸ሬ⃗ (𝑡)   (12.15) 

This equation is known as the Debye relaxation equation. Note that for static fields the time 
derivative will become zero, producing exactly the static polarization from Eq. 12.12 which 
we found using statistical mechanics. Also note that if the field is turned off, our relation 
becomes exactly of the form of Eq. 12.14, describing the assumed exponential decay of 
P(t).   
 
We can now derive the frequency-dependent susceptibility by substituting a harmonically 
oscillating field in Eq. 12.15, i.e. we substitute 𝐸(𝑡) = 𝐸(𝜔)𝑒ି௜ఠ௧ + 𝑐. 𝑐. and we assume 
that the response is linear, meaning the polarization will oscillate at the same frequency: 
𝑃(𝑡) = 𝑃(𝜔)𝑒ି௜ఠ௧. Carrying out the time derivative, and dividing out common frequency 
terms this gives 

−𝑖𝜔𝜏𝑃(𝜔) + 𝑃(𝜔) =
𝑁𝑝଴

ଶ

3𝑘஻𝑇
 𝐸(𝜔) ⇒   𝑃(𝜔) =

𝑁𝑝଴
ଶ

3𝑘஻𝑇

1

1 − 𝑖𝜔𝑡
𝐸(𝜔)   (12.16) 

Comparing to the definition of susceptibility we have found  

𝜒(𝜔) =
𝑁𝑝଴

ଶ

3𝑘𝑇𝜀଴

1

(1 − 𝑖𝜔𝜏)
   (12.17) 

This is the Debye susceptibility, representing the susceptibility contribution due to 
molecular alignment in a polar liquid. The corresponding complex refractive index curves 
including only the susceptibility from molecular reorientation are shown below for a 
rotational correlation time of 100 ps. Note that there is maximum absorption when =1/. 
In reality we would at least need to add the low-frequency electronic susceptibility of the 
liquid to get more realistic results.  

 
Figure 12.7. Typical optical response predicted by the Debye relaxation model 

The calculated curves show that we can absorb GHz radiation in a polar liquid, causing the 
liquid to heat up. This is the operating principle of microwave ovens: food or drinks 
containing water molecules are irradiated with strong EM radiation at a frequency that falls 
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within the absorption band related to the rotational correlation time of water, causing heat 
generation. Our microwaves are thus specifically optimized for heating water, and would 
not necessarily work well for heating up other polar liquids. An interesting related fact is 
that molecules in ice cannot easily reorient, so it is initially difficult to heat up frozen foods 
using microwave radiation, until some of the H2O becomes liquid.  
 
Below is the measured complex refractive index of water on a log scale. Note that the low-
frequency (long wavelength) response matches the behavior predicted by the Debye model. 
There is a large index contribution at wavelengths longer than 1mm due to alignment, and 
a related absorption peak for a wavelength of ~10mm, or a frequency of 30 GHz.  At 
wavelengths below 10 m (E >~124 meV) we see additional peaks in  largely due to the 
excitation of vibrations. At a wavelength around 500nm we see minimum absorption, 
followed by the onset of strong electronic absorption. We see that the transparency range 
of water occurs between vibrational transitions and electronic transitions, which 
conveniently happens to coincide with the visible range. 
 

 
Figure 12.8: The refractive index of water, from http://www.philiplaven.com/p20.html . Note the 
Debye like response at wavelengths above 100 m (frequencies below 3 THz), as well as some 

vibrational lines between 1 m and 10 m.  
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Chapter 13 – Interaction of light with vibrations in solids 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
In Chapter 11 we studied how molecules supports vibrational normal modes, with 
frequencies that depend on the chemical bond strength and on the masses of the atoms in 
the molecule. In solids similar effects occur, with the major different that the atoms are 
bound in a three-dimensional crystal lattice. In this chapter we will see that non-metallic 
compound solids support dipole active vibrations that extend throughout the entire crystal, 
resulting in resonances and strong Lorentz-like contributions to the dielectric function at 
IR frequencies.  

Vibrational modes in a monatomic 1D lattice 

In a crystal atoms are bound in an extended lattice, and the resulting vibrational normal 
modes extend throughout the entire crystal. These extended vibrational modes are called 
phonons. Crystals are much easier to deal with analytically than non-crystalline solids, but 
much of what we do here for crystals applies to non-crystalline solids as well.   
 
To understand the basic mechanical response of crystals we start with the simplest case of 
a 1-dimensional monatomic lattice. The assumption of a monoatomic lattice (all atoms 
have identical mass) implies that we are discussing an elemental solid such as pure Si or 
even pure Al. As such we do not expect polar bonds, and therefore we do not expect dipole 
active modes (see Chapter 11) and no strong phonon-photon coupling. Nevertheless, the 
monoatomic lattice model provides valuable insight into vibrations in solids. 
 

 
Figure 13.14 

In our simple model, a unit cell (length a) contains only one atom with mass m, and there 
is only one spring constant K that represents the inter-atomic binding potential. For 
simplicity we consider only nearest-neighbor interactions, meaning that the force on a 
given atom is affected only by the atoms immediately adjacent to it. The atoms are 
numbered with a variable  with X

 representing the time dependent position of atom  
relative to its equilibrium position. The restoring forces depend on displacement 
differences. For example if atom 2 has moved more to the right than atom 1, atom 1 will 
experience a positive force K(x2-x1). The total equation of motion thus becomes: 


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showing that the acceleration of atom  depends only on the distance to its neighbors, not 
on its absolute position.xxix   
 
We will again look for solutions where all atoms oscillate at the same frequency, i.e. all X 
terms have the same time dependence, e-it.  In this case the equation of motion becomes 

)2( 11
2

   XXXKXm        (13.9)  

We will see that this equation has traveling-wave solutions with the displacement of atom 
 relative to its center position given by  

)()( tiakitzki exexX  





   (13.10) 

where  represents the number of the mode, z is the average position of atom  along the 
chain given by z=a and k is the wavevector of the th mode. The center positions of 
the left and right neighbors are z-1 = (a)-a  and  z+1 = (a)+a  respectively, resulting in 
a displacement 

aikaki eexX 



 1 . (13.11) 

where the time dependence has been omitted. We substitute this displacement in equation 
13.9, resulting in: 

 akiakiakiaki eeeKxexm  



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Note that the vibration frequency  indeed only depends on the relative phase of the 
neighbors. We now have a series of allowed modes with wavevector k and angular 
frequency  according to  
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 (13.14) 

This equation represents the phonon dispersion relation in a one dimensional mono-atomic 
lattice. The dispersion relation is shown below. We see that low values of k correspond to 
low oscillation frequencies. This is – as mentioned before – due to the small relative 
displacement of adjacent atoms for modes with low k values, resulting in a small restoring 
force.  

                                                 
xxix  This last observation will become important later, since it implies that oscillations in which neighboring 
atoms move approximately in-phase will experience little acceleration, resulting in a set of low frequency 
phonon modes.   
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Figure 13.15 

Note that the maximum oscillation frequency that a collective mode can have is 2(K/m).  
This frequency occurs at k =  /a, in other words when adjacent unit cells (in this case 
containing 1 atom) are 180 degrees out of phase. A wavenumber /a corresponds to a 
vibration wavelength of 2a.  For wavenumbers of magnitude >/a, the same physical 
configuration can also be described by a wavenumber that is less than /a, so there is no 
new physical situation outside the range -/a < k < /a.  This range is known as the first 
Brillouin Zone, or often simply ‘the Brillouin zone”. 

Boundary conditions and degrees of freedom   

In a 1D lattice of length L, each atom has 1 degree of freedom, so we expect that there are 
a total of N of these collective modes, i.e.   {1 .. N}, where N is the number of atoms in 
the crystal, given by N=(L/a)+1.  In a finite crystal, the eigenmodes are described by 
standing waves with a wavelength that satisfies =2L/. with {0,N}  The case =0 
corresponds to translation, while the longest finite wavelength is described by k=/L. The 
shortest possible physically meaningful wavelength is 2a. The allowed wavevectors are 
thus  
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representing N allowed modes with evenly spaced k values, and N different wavelengths:  
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,2,  (13.16) 

The discrete nature of k is generally not important for the optical properties of large 
crystals.  
 
In the limit of an infinite crystal, the left- and right-propagating modes need to be 
considered as independent modes, suggesting that a subset of N atoms in this infinite crystal 
would support 2N modes, which cannot be correct. In fact when calculating the number of 
allowed modes on this subset of atoms with length L, the set of atoms needs to support the 
entire wavelength which limits the allowed positive wavevectors to  
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with an equal number of negative wavevectors and one solution for k=0, bringing the total 
number of modes for the set of N atoms to  
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as expected.  Note that the discussion above involved a monatomic lattice, for which the 
vibrational modes cannot interact with radiation.  To look at the interaction of light with 
lattice modes, we must next examine the lattice modes of a diatomic lattice. 

Vibrational modes in a diatomic 1D Lattice 

 
Figure 13.16 

In this section we will discuss a linear chain consisting of atoms with masses M and m, 
characterized by displacement amplitudes us and vs respectively, where s is an index 
indicating the unit cell.  Note that in this case a corresponds to the length of the unit cell, 
and that a unit cell contains two atoms, one of each kind. A wavevector of /a thus implies 
a phase difference of 180 degrees between the behavior inside adjacent unit cells, not 
between adjacent atoms.  We will find that the internal structure of the unit cell adds an 
internal degree of freedom, giving rise to two phonon modes for each value of the 
wavevector.  
 
Assuming next-neighbor interactions, the equations of motion are 
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Again, we look for traveling wave solutions, where us, vs have the same frequency and 
wavenumber, but different amplitudes.  We anticipate solutions of the form 
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Substituting these trial functions into the equations of motion, we obtain 
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For a solution to exist the determinant needs to be equal to zero: 
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This leads to an equation of the order 4, resulting in two independent solutions for 2 : 
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This represents the dispersion relation for a diatomic linear lattice, schematically shown 
below.  
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Figure 13.17 

Two separate ‘phonon branches’ are observed, a low frequency or ‘acoustic branch’, and a 
high frequency ‘optical branch’.  To understand the nature of these phonon branches we 
will investigate the high and low wavevector limits:  k0 (or ka << 1) and  k  /a.  
 
For the latter case, k  /a, meaning that 1-cos(ka)  2, so that the solution simplifies to 
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Hence, at the zone boundary we find two allowed solutions with frequencies corresponding 

to 
m

K22   and    
M
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For ka << 1 we can approximate cos(x)1-½x2  giving  1-cos(ka)  k2a2/2, leading to  
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hence we have two solutions for this range of ka. The solution with the + sign corresponds 
to high frequency modes: 
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where  is the reduced mass of the unit cell, 
Mm
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The ‘-‘ case leads to  ka
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   showing a linear 

dependence of  on k at low frequencies.  
 
Three example curves are shown below for identical transverse spring constant KT and a 
fixed longitudinal spring constant KL=1.4KT. Note that the total mass affects the acoustic 
branch slope, the reduced mass affects the maximum resonance frequency, and the mass 
ratio determines the frequency splitting at the zone boundary (k=/d with d the unit cell 
length). 
 

 
Figure 13.18 Example dispersion curves for phonons assuming a fixed transverse spring constant 

KT and a fixed longitudinal spring constant KL = 1.4 KT.  

Interaction of radiation with lattice modes 

In solids with more than one type of atom, the different atoms will generally have slightly 
different charges.  This means that the different atoms will experience forces in different 
directions due to an applied field, and consequently, a macroscopic polarization due to the 
lattice can be induced by an electric field.  The natural frequency of oscillation of such a 
polarization corresponds to the “optical modes” calculated previously for the diatomic 
lattice.   
 
Now the wavelength of light is always much greater than the lattice spacing, especially for 
the infrared region where the frequency of the EM wave is resonant with the optical modes,  
i.e.  >> a.   
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Figure 13.19 Dispersion curves for phonons (lattice modes) and photons, assuming for now that 

there is no change in index due to the lattice 

Hence the optical wave interacts with very long wavelength lattice modes (compared to a).  
This means that k0 for the optical lattice modes, which is convenient as it simplifies the 
mathematics.  Since k0, we can assume that the applied field is spatially uniform, which 
is true over many thousands of atomic spacings.  Hence, 

tieEtE  0)( . (13.27) 

The coupled equations for displacements u and v are then 
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Since k0 the phase term eik1, leading to us(t)=u0e-it and vs(t)=v0e-it independent of s.  
Substituting u and v gives 
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For this, the solutions for amplitudes u0 and v0 are of the form 

22
0

022
0

0

/
,

/

 








TT

mqE
v

MqE
u  (13.30) 

where T is the resonant frequency of the optical modes at k = 0,  K
T

2 .  This is 

sometimes referred to as the "transverse optical phonon" frequency, hence the subscript T.  
As before,  is the reduced mass. 
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Optical properties of polar solids 

The lattice contribution to the polarization is 

)( 00 vuNeP  , (13.31) 

where e is the effective charge on the atoms in the lattice (not usually equal to e.)  The total 

polarization is boundPPP   , where again, Pbound is the electronic polarization.  So the 

total dielectric function is  
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Where r() is the high frequency dielectric constant.  Note that this is not truly the value 
at   , which is always 1, but is usually taken to mean the value at frequencies well 
above T, yet well below any electronic resonances.  The overall behavior of r() is 
sketched below.  Note we have not included damping, as it is not too important here.  We 
will look at the effect of damping a little later. 
 
We can use this relationship to find a value for the low frequency dielectric constant, r(0), 
using 
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Figure 13.20 

The Lyddane-Sachs-Teller relationship 

From our expression for r(), we can write 
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This shows us that r() = 0 for 
22 )()0(   rTr .  This frequency is labeled L, the 

"longitudinal optical phonon" frequency, at which r = 0, rather like the plasma frequency 
for electronic polarizability.  Hence, 
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Which is known as the Lyddane-Sachs-Teller relationship, which works quite well for polar 
diatomic materials.  Two examples:  

GaAs:   L/T  =  1.07  )(/)0( rr   1.08 

KBr:   L/T  =  1.39  )(/)0( rr   1.38 

 [Ref:  C. Kittel, Introduction to Solid State Physics, (Wiley)] 
 
Note that L > T, always.  Hence (0) > (), as might be expected.   
Similar to plasma oscillations,  L is the frequency for longitudinal long wavelength lattice 
oscillations. 
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Figure 13.21 

Refractive index of polar and ionic solids 

The behavior of the refractive index for a transverse optical phonon resonance is similar to 
that of a Lorentz oscillator. In our model the only difference is that we have ignored 
damping. In real materials phonon modes also undergo damping or scattering (change of 
wavevector direction and magnitude), resulting in a finite . In Fig. 13.22 we show the real 
and imaginary parts of the refractive index for AlSb and the corresponding reflection 
spectrum.    
 
 

 
Figure 13.22: Complex dielectric function and refractive index of AlSb based on fit of 

experimental data by Turner and Reese 
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Reflectance of polar solids – Reststrahlen band 

In the absence of damping, the reflectance must be unity in the region T <  < L, again 
just like for electronic transitions (see figures below). This region is called the 
"Reststrahlen" band, where light cannot propagate in the material, so must be absorbed or 
reflected, see Fig. 13.22. For sufficiently large negative r’ we have a large imaginary 
index, causing R to be very close to 1.  
 

 
Figure 13.23: Reflection spectrum of AlSb and calculated transmission spectra for four thickness 
choices, ignoring multiple internal reflections (unphysical for thin films, done here for illustrative 

purposes) 

Effect of phonons on transmission spectra 

In the preceding sections we learned that there are dipole active phonons in polar and ionic 
crystals. In many cases the large number of participating atoms leads to a large 
modification of the infrared response, resulting in a Reststrahlen band (large reflection) 
between T and L. Just above L there is a frequency where n1, resulting in a reflection 
minimum in air.  
 
Based on the reflection spectrum shown in Fig. 13.23 we expect that compound dielectrics 
are opaque for wavelengths in the Reststrahlen band. Intuitively one might expect a 
transmission maximum corresponding to this reflection minimum, but in practice for thick 
materials (e.g. a 1 mm thick slide) this is not observed. The reason for this is that the 
absorption coefficient at this wavelength is still sufficiently large to produce almost zero 
transmission, see Fig. 13.23. Note that for a 1mm thick slab of AlSb the no transmission 
peak is observed when n=1. Also note that the onset of ‘zero’ transmission does not 
coincide with L (29.5 m) but instead occurs at higher energy (  27 m) due to 
absorption.  
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Coupled Photon-Phonon modes: Phonon-polaritons 

Recall that we started out by drawing the dispersion of light ( versus k) as a straight line. 

= ck/  r .  However, clearly close to the vibrational resonance frequencies (~ 1014 

rad/sec), r is clearly strongly varying and  versus k will not be a straight line.   
 

For  ~ 0, the refractive index is given by )0( , while at high frequencies it is given by 

)( .  In these limits, the wave is described as "photon-like".  However, as  

approaches T, the index increases, and the group and phase velocities of the wave slow 
down to be close to that of the lattice modes.  Here, the wave propagates as a strongly 
coupled polarization - electric field wave, with velocity characteristic of the lattice mode.  
Here the wave is described as "phonon-like".   
 

 
Figure 13.24 

Solids with more than one atom per unit cell  

This can get complicated, but generally, we see several phonon resonances, as illustrated 
below for GeO2. In this case,     
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Figure 13.25 
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Examples of n,  spectra 

These are taken from Optical Properties of Solids, by Palik. The next few pages will show 
some representative materials types and we will make some comments on these. 
 

Lithium Fluoride (LiF) 

 

 
Figure 13.26 
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Gallium Arsenide (GaAs) 

 

 
 

Figure 13.27 
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Diamond 

 
Figure 13.28 
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Lithium Niobate (LiNbO3) 

 

 
Figure 13.29 
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Chapter 14 – Optical properties of semiconductors 
 
 Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html  
 
In chapter 3 we described the optical properties of insulators. We discussed that the valence 
electrons in insulators are relatively strongly bound to the individual atoms in the material, 
resulting in high resistivity and low absorption throughout the visible spectrum.  In chapter 
6 we discussed metals, in which the valence electrons can be considered free, leading to a 
high conductivity, negative  at low frequencies and high absorption and reflection. In this 
chapter we will discuss an intermediate case: semiconductors. In semiconductors, the 
valence electrons are generally ‘somewhat’ bound to the atoms in the material, with 
binding energies of up to several eV. As a result, at room temperature these materials 
contain a small concentration of electrons that have broken free from the atoms, resulting 
in a small conductivity. This is the origin of the word ‘semiconductor’.  
 
The optical response of semiconductors is largely due to electronic transitions. In order to 
understand the possible electronic transitions, it is important to understand the electron 
dispersion relation or electronic band structure in semiconductors.  

Electronic Band Structure 

As was already mentioned in Chapter 5, the Lorentz model is not an accurate description 
of solids. While isolated atoms have well defined electronic states representative of the 
atom, as individual atoms are brought together the atoms start  to interact,  leading to shifts 
in the electronic energy levels. At the densities common in solids (~1022 atoms/cm3) 
significant interaction occurs, causing levels to broaden out into bands, as schematically 
indicated in Fig. 14.1. The energy bands still retain some of the characteristics of  their 
atomic origins.  For example, in GaAs, the valence bands are mainly p-like in nature, while 
the conduction band is s-like.  

 

Atom         Solid 

E
ne

rg
y 

 
 

Figure 14.1 

In covalent bonded solids, (e.g. GaAs, Si, Ge) outer electrons are quite evenly shared 
between different atoms, so the electron orbitals are extended throughout the crystal, and 
the energy bands corresponding to these orbitals are very broad.  However in ionic bonded 
solids, (e.g. NaCl, MgF2, KCl)  electrons are much more localized and the bands are 
narrower.  The absorption spectra of these materials retain more of the characteristics of  
atoms.  (See figures 3.6 and 3.7 in Wooten.) 
 
In order to understand the resulting energy band structure, we will use a quantum 
mechanical description. In quantum mechanics, the behavior of an electron in an electric 
potential V(x) is described by the Schrödinger equation 
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Here (x,t) is called the wavefunction of the electron. The wavefunction  has some 
similarities to the electric field in the scalar wave equation. For example, the probability of 
detecting photons is proportional to EE* or |E|2 (where * indicates taking the complex 
conjugate) while the probability of detecting an electron is proportional to * or ||2. As 
such *  represents a probability density function. The operator between the square 
brackets is called the Hamiltonian, also written as H. Similar to the decomposition of 
vibrations into normal modes, the allowed electronic states can also be described in terms 
of ‘normal modes’ or Eigenfunctions of the Schrödinger equation. These eigenmodes 
satisfy the time independent Schrödinger equation: 
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where the time dependence of the eigenmodes is harmonic, as given by 
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The Schrödinger equation in free space (V(x)=constant) leads to plane wave solutions of 

the form. 
)()( txki

k
eAex   .  Here A is a normalization factor to ensure that the total 

probability adds up to 1, and E  (see Eq. 14.3). Note that the time dependence is only 
related to the total energy of the wavefunction (kinetic plus potential). Substituting the 
plane wave into the Schrödinger equation we find that the total energy of a free electron is 
given by 
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k
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22
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where in free space V is some constant potential energy (which we can arbitrarily set to 
zero) and the other term constitutes the kinetic energy, with ke being the electron 
wavevector and m the electron mass.  
 
When an electron travels into a region with a lower potential energy (e.g. closer to a 
positively charged atom), the kinetic energy goes up, and the wavefunction acquires a 
shorter wavelength. In a sense, the behavior of electron waves entering a low potential 
region resembles that of light entering a high refractive index region. Just as for light, 
changes in wavelength give rise to reflections, in this case electron wave reflection.  Inside 
a crystal, electrons experience a periodic potential due to the regularly spaced atomic cores 
in the crystal lattice, leading to multiple electron wave reflections, and electron wave 
interference. The multiple reflections result in eigenmodes that are affected by the exact 
shape of the periodic potential V(x). For an infinite crystal, the Eigenfunctions describe a 
state with a well-defined energy and a corresponding spatial distribution of the electron 
throughout the entire crystal.  In a simple linear lattice with lattice spacing a, we have V(r) 
= V(r+a), as shown below.  
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Figure 14.2 

Since the electrons are bound in a periodic potential, the Eigenfunctions will also have a 
periodic character. The periodicity of V(x) implies that a wavefunction which satisfies  
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should also satisfy 
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Wavefunctions that satisfy condition can be described by functions of the formxxx  
xik

kk
eexux )()(  .  Here uk(x)=uk(x+a) is a periodic wavefunction called a Bloch 

function, which can be interpreted as (approximately) describing the electron distribution 
within a single unit cell. The phase term eikex represents a phase difference of the 
wavefunction in adjacent unit cells.xxxi  For core electrons (those tightly bound to the 
nucleus) uk(x) represents a strongly localized wavefunction similar to the electron orbitals 
around a hydrogen atom. The less strongly bound valence electrons are described by more 
extended wavefunctions that have significant amplitude in between neighboring atoms. 
Free electrons are described by wavefunctions with a high energy E, such that the 
wavevector remains real in between atoms (where V(x) is high).  
 

 
Figure 14.3 

To understand the main features in the electronic band structure, it is instructive to start 
from an electron traveling in a periodic atom lattice with spacing a and zero binding 
                                                 
xxx See for example Solid State Physics, N.W. Ashcroft and N. D. Mermin, Chapter 8  
xxxi Note that in this case the phase function is continuous in space, in contrast with the description of 
phonons, where the phase term represented the phase of a vibration at discrete points in space 
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potential. The dispersion relation will thus be exactly that of a free electron, as shown 
below.  

 
Figure 14.4 

For fast electrons, we find that k will exceed /a. Such rapidly varying wavefunctions can 
be split up into a part that describes the overall phase difference  between adjacent atoms 
(-<<) and a part that describes the behavior of the wavefunction within a unit cell, 
for example  
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Where 
axiexu /2)(   can be seen to satisfy u(x)=u(x+a), and the phase difference between 

neighboring unit cells ||= 0.5 is indeed between - and . This illustrates how high-
energy solutions can be described by an overall low k-vector and a Bloch function. This 
enables us to represent all electron states in this 1D lattice inside the first Brillouin zone, 
also shown below.  
 
The use of only the first Brillouin zone for the display of the electron dispersion relation is 
called the ‘reduced zone scheme’: 

   

E
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Figure 14.5  The dispersion relation for an electron in a periodic crystal represented in the 
reduced zone scheme for zero binding potential (left), and finite binding potential (right). 

 
As in the case of phonon dispersion, the zone boundary represents a situation where there 
is neighboring unit cells are 180 out of phase. This again leads to a splitting of the energies 
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at the zone boundary. The splitting gives rise to characteristic energy bands that are 
separated by energy gaps in which no electron states exist, as illustrated in the right side of 
the figure.  
 
Electrons are Fermions, meaning that no two electrons can occupy the same quantum state. 
Since there is only a finite number of electrons available in a crystal, the available low-
energy states are occupied by electrons up to a certain maximum energy. An important 
feature of semiconductors and insulators is that the highest filled energy state lies just 
beneath an energy gap (called ‘the band gap’), while the states just above the gap are 
unoccupied. The filled band below the band gap is the valence band, and the empty band 
above the band gap is the conduction band.  

Charge carriers – free electrons and holes 

The existence of a completely filled band has important consequences for the conductivity: 
an electrical current requires the existence of a net electron momentum, for example more 
electrons traveling to the right (positive k) than to the left (negative k). In insulators and in 
semiconductors (at zero Kelvin) all available positive and negative k vector states in the 
valence band are filled, resulting in zero conductivity. In semiconductors, the energy gap 
is sufficiently small that at room temperature some valence electrons are thermally excited 
into the conduction band (‘broken free from an atom’), generating a free electron and 
leaving behind a positively charged atom. The resulting unoccupied electron state in the 
valence band is called a hole. Both these states are free to move through the crystal, giving 
rise to a finite conductivity at room temperature. Hence the term semiconductor. Free 
electrons and holes also affect the optical properties of semiconductors via free carrier 
absorption, as described later in this chapter.  

Effective mass 

In the description of the optical properties of semiconductors it is important to know the 
‘effective electron mass’. For free electrons the electron mass follows from the relation 
between E and k:   
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As is clear from the band structure shown above, the dispersion relation in a periodic lattice 
is no longer a simple parabola for all k vectors. However for energy levels close to a band 
gap (e.g. near the ‘zone center’), the dependence of E vs. k is approximately parabolic. This 
allows us to ascribe an effective mass, m*, that fits the band curvature according to 
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The effective mass will be dependent on the exact band structure, and as a result will vary 
from semiconductor to semiconductor. For most semiconductors, me* lies in the range 0.1-
1.0 me. The figure below shows a sketch of a band structure near the zone center, and 
around the band gap. Note that there are two valence bands that have the same energy at 
k=0, but that have a different effective mass. This is a situation that occurs in many 
semiconductors. As a result, holes can have different effective masses, respectively the 
heavy hole mass m*HH and the light hole mass m*LH.  
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Figure 14.6  Fundamental Absorption Processes 

Absorption processes in direct-gap and indirect-gap semiconductors 

The figure above includes the main absorption processes that can occur in a direct-gap 
semiconductor. A direct bandgap semiconductor is a material in which the minimum of the 
conduction band (CB) occurs at the same k-value as the maximum energy in the valence 
band (VB).  A direct transition is a transition that does not require a change in the 
wavevector. Common direct absorption processes are  
 

- interband absorption (VB-CB or VB-VB)   
- VB-to-exciton state absorption,  
- VB to (unoccupied) donor, acceptor, or mid gap state absorption 
- (occupied) donor, acceptor, or mid gap state to CB absorption 

 
Free-carrier absorption is an indirect (phonon-assisted) process, which means that the 
initial and final states have different k-values. All these processes will be summarized 
below.  
 
Some semiconductors have an indirect gap, which means that the longest wavelength 
(lowest energy) absorptions must occur with the assistance of a phonon, making the 
absorption edge less sharp than in direct-gap semiconductors.  
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Figure 14.7 

A sketch of a plot of absorption coefficient versus photon energy and wavelength for a 
"typical" semiconductor is shown below.  The various absorption processes in each 
wavelength region are labeled on this graph. 
 

 
Figure 14.8 

In the following paragraphs, we describe these processes in some more detail. 

Interband absorption 

The dominant feature of the absorption spectrum of a semiconductor is the interband 
absorption.  We will deal with direct-gap semiconductors here, and we will look briefly at 
indirect gap semiconductors at the end. 
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Density of States and Fermi Golden Rule 

Optical absorption in semiconductors is due to light-induced transitions from occupied 
electron states to available unoccupied states. For that reason the number of available states 
is an important quantity. For continuous energy bands this is described in terms of the 
Density of States, g(E).  For isolated atoms the density of states (DOS) corresponds to the 
number of available states per atom per unit energy. This means g(E)dE is the number of 
states (per atom) in the energy range (E, E+dE).  This quantity is used in the quantum 
mechanical calculation of the transition rate W from initial state k to final state n of the 

atom upon illumination with photons of energy  : 
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This relation is called the Fermi Golden Rule. Here  E0 is the applied electric field strength, 
and kn is the transition matrix element (units C·m in this form) for states k and n. This 
tells us how strong the transition is. For some states, kn=0  (forbidden transition). 
 
We can relate the transition rate for each atom Wkn to the absorption coefficient, since the 

absorption rate W of photons with E= for N atoms per unit volume corresponds to an 

absorbed power per volume:  
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We can express W in terms of the irradiance I, since both W and I depend on E0
2. We will 

assume that Ek=0 and we will write the photon energy as E= so that g(Ek+)=g(E).   
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This shows that the absorption coefficient depends on the dipole transition matrix element, 
how many atoms are present per unit volume, and on the density of states g(E), given by 
the number of states per atom in the range (E, E+dE). 
 
For a semiconductor, which has continuous energy bands that describe collective electronic 
states of the crystal, we need to find an analogous ‘number of states per atom’. Instead of 
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‘states per atom’ we will use the function (E)dE to describe the number of states per unit 
volume in the range (E, E+dE), so that effectively g(E)N  (E).  (‘states per atom times 
atoms per volume equals states per volume’). Therefore we expect to arrive at an 
expression that looks of the form 
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We will see in the following that in this expression the function  actually needs to be 
replaced by a quantity J(E) known as the joint density of states.  
 
To calculate the interband absorption, we need to calculate the density of states (E) based 
on our known E(k) as given by the effective electron mass m*. First, we need to look at 
how many k values are available in a given band. Since the allowed free electron states 
described Bloch waves, then 
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To calculate the number of allowed states per unit volume, we demand that a given volume 
contains only ‘complete waves’. This is equivalent to applying periodic boundary 
conditions, i.e. demanding  
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where Lx, Ly and Lz are the dimensions of the volume of interest.  This requires that 
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Where Ni is the number of unit cells along Li, ensuring that the maximum k vector is /a. 
The allowed k-values are thus evenly spaced in k-space (or reciprocal space).  Each of 
these k-vectors represents an allowed electron state. Hence we can say there is one allowed 
state per unit volume of k-space, where the “unit volume” in k-space is:  
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with V the considered volume of the semiconductor crystal. 
 
To calculate the density of states around some energy Emax above the bottom of the 
conduction band, we first calculate the number of allowed k-values that correspond to an 
energy E(k) below Emax, and then we take the derivative of this number with respect to E 
to find the number of states within an energy range dE. For a parabolic band, this implies  
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Now the number of k vectors that have satisfy |k|<|kmax| is given by the volume of a sphere 
in reciprocal space with radius kmax, divided by the unit volume k: 

 
Figure 14.9 

Hence the number of k-values/unit volume in (k, k+dk) = (k)dk is given by the surface 
area of the sphere * dk /V, divided by k, i.e. 
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The number of electron states in that same interval is actually 2(k)dk since each k-value 
can contain two electrons with opposite spin. If can now rewrite this density of states in 
into a quantity that represents the number of states in an energy interval dE, we will have 
found (E). This can be done by multiplying 2(k) by the derivative of k to E:  
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Now, for a parabolic band,  
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so that  
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If we define the top of the valence band as E=0, then the lowest energy in the conduction 
band becomes E=Eg. The density of states for electrons in the conduction band then 
becomes 
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The figure below shows a sketch of the resulting electron density of states function.  

 
Figure 14.10 

For the light and heavy holes, the densities of states defined at an energy E with respect to 
E=0 at the top of the valence band are 
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Absorption due to interband transitions 

For optical absorption to occur, we must have energy conservation: Ef=Ei+ as well as 

momentum conservation: kf=ki+k, where k is the optical wave vector and ki, kf are the 

initial and final electron wavevectors.  Since the photon momentum is very small, it is a 

very good approximation to demand that kf=ki, so that transitions are essentially 

“vertical” or “direct”.   For HH-CB transitions, the initial and final energies are  
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Figure 14.11 

Hence the requirement for a direct transition with energy Edirect is 
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where we have introduced the heavy-hole reduced mass HH as: 
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For LHCB transitions, we simply use the light-hole mass in place of the heavy-hole mass 
to find the appropriate reduced mass, LH.  Be careful not to confuse this effective mass 
with the transition matrix element kn. The expression we found for the energy difference 
in a direct transition links the energy to the wavevector.  
 
Optical absorption doesn’t just require a high density of initial states; there also must be 
allowed final states at higher energy. If we are to count the number of states that can 
contribute to an absorption event with energy difference ℏ𝜔, when need to count the 
number of allowed k values in the valence band that are separated from the conduction 
band by an energy ℏ𝜔. Since we have an expression for Edirect(k) = Ec(k)-Ev(k), we can find 
the joint density of states J using Edirect(k) using the approach that we used previously for 
finding e based on Ec(k). In other words, we can calculate the ‘density of momentum 
conserving transitions per unit volume’, known as the joint density of states:  
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Note that (k) is the same quantity as in the previous analysis: it still represents the number 
of states available in an interval dk. Hence, the joint density of states is 
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This result, which followed from the requirement of energy conservation, momentum 
conservation, and the conduction and valence band structure near the band edges (described 
by electron and hole effective masses), allows us to calculate the absorption coefficient 
according to the Fermi golden rule (Eq. (14.10)): 
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This expression is only valid for   Eg.  The details of the transition matrix elements are 

tricky to calculate and as a result we cannot easily use the above formulation for a 
quantitative prediction of the absorption spectrum. However, sufficiently close to the band 
edge,  and |nk|2 can be considered approximately constant, and in practice the product 
|nk|2 remains approximately constant over a significant frequency range, so that we can 
write: 
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The graph below shows the example of interband absorption in InAs, where the above 

analysis works well (from “Optical Properties of Solids”, M. Fox).  Here, 2()  ( - 

0.35 eV), as predicted above, where Eg = 0.35 eV. For comparison the effect of a fixed 
transition matrix element is plotted as a dashed line. 
 

 

 (E-0.35)*2

 
Figure 14.12 

In most cases, the effect of excitons (a bound electron-hole state due to Coulomb 

interactions, see next section) causes the density of states to be enhanced for   Eg, so 

that the absorption coefficient has a rather different shape than the (-Eg)1/2 dependence.  

(See e.g. the figure for GaAs in the next section.) 
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Exciton absorption 

In a semiconductor, an exciton refers to a bound state of an electron (e) and a hole (h).  The 
electron is excited out of the valence band, leaving behind a hole. The electron can become 
bound to the hole due to Coulomb interaction, resulting in hydrogen-like bound states (n=1, 
2, …). The e-h pair is free to move about the material as a single, uncharged particle. In 
this bound state the electron still has characteristics similar to that of free electrons, but its 
energy is a little lower than that of conduction band electrons as a result of the Coulomb 
interaction, and similarly the bound hole state lies a little above the valence band. The 
exciton binding energy, Eb, is the energy required to separate the pair, producing a "free" 
electron in the conduction band and a free hole in the valence band. The existence of 
exciton states allows the absorption of light by valence electrons at energies slightly lower 
than the bandgap energy. In these VBexciton absorption a bound e-h pair is created in 
any of its allowed states (n=1,2, …), giving rise to multiple absorption lines just below the 
band-to-band, or interband absorption energy. 
 
 

 
Figure 14.13  Schematic representation of an exciton in real space (left) and in k space (right). 
The sketch on the left  assumes an equal electron and hole mass, while in general the hole has a 

larger mass. 

 
 
 

 

Figure 14.14  Sketch of VBexciton absorption (left) at low temperature, resulting in absorption 
lines just below the interband absorption, and (right) at elevated temperatures, resulting in 

reduced exciton lifetime, and therefore an ill-defined exciton energy and broadened absorption 
lines 
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For most semiconductors Eb is 5-20 meV, which is on the order of kT at room temperature. 
As a result, that exciton lines are generally not sharp and not clearly separated from band-
edge absorption unless the sample is cooled, as illustrated in the above sketch, and in the 
figure below for GaAs at 4 K and 300K. 

 
Figure 14.15 

Impurity absorption 

 
Figure 14.16 

Impurities added to a semiconductor can usually be categorized as "donors" or "acceptors".  
Donors are atoms that have one extra valence electron compared to the atoms in the 
surrounding lattice.  For example, in silicon or germanium, which are group IV elements, 
As or Sb atoms which are group V elements have an extra valence electron.  The extra 
electron does not participate in bonding orbitals and hence is only weakly bound to the 
impurity by the Coulomb force. At low temperature, the electron orbits around the impurity 
in a way that can be modeled by the Bohr model of the atom. The binding energy, Ed, is 
typically of the order of kT at room temperature so at room temperature the electron is 
ionized into the conduction band and is free to move around as a conduction electron.  
Acceptors have one valence electron less than the host material, e.g. a group III element in 
Si or Ge. In this case, the acceptor provides an empty state or a "hole" where a valence 
electron could sit.  If this hole moves away from the acceptor (i.e. if a neighboring valence 
electron occupies this available state), the acceptor becomes negatively charged and the 
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positive hole may end up being bound by Coulomb interactions, just like the donor 
electrons.  Again, though, the binding energy is small and at room temperature, the holes 
may move freely around as positive charge-carriers.  Because these are so weakly bound, 
the VB-acceptor and donor-CB transitions are not seen at room temperature.  They can, 
however, be observed at low temperatures, such as the example of VB-to-acceptor 
absorption in Boron-doped Si at low temperature, shown below.  These absorption 
resonances occur in the far infrared (here at least ~30 meV). 
 

 
Figure 14.17 

All the various possible donor and acceptor related absorption processes at low temperature 
are shown below.  However, at room temperature, the main optical consequence of donors 
or acceptors is free-carrier absorption. 
 

 
Figure 14.18 

Free carrier absorption  

Free carrier absorption results from the excitation of a free carrier into an available state 
higher in its respective band (e.g. electrons higher into the CB). As a result, free carrier 
absorption is quite different for electrons and for holes, mainly due to the presence of 
multiple valence bands.  Free electrons located at k=0 in a single parabolic conduction band 
can reach higher energy states if their momentum is increased. This means that in n-type 
semiconductors, conduction band electrons may only be excited by the simultaneous 
absorption of a photon and absorption or emission of a phonon, in order to conserve 
momentum.  By contrast, p-type semiconductors can have direct (i.e. no phonon needed) 
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transitions between the heavy and light hole bands (see the FHA process sketched earlier 
in this chapter).  This causes the holes to produce much stronger free carrier absorption 
than conduction electrons.  The conduction electron absorption process may be described 
by the Drude model.  For semiconductors, the free electron density is often small 
(~1014/cm3 or about 108 smaller than in a metal) so that the plasma frequency is small.  
(about 104 lower than a metal). Recall that, for frequencies well above the plasma 
frequency, the Drude model gives 
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so that the absorption coefficient is hence given by, 
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Hence we see a -2 dependence for free carrier absorption due to electrons.  This can be 
seen in the broad-spectrum plot of absorption for a typical semiconductor shown earlier. 
Note that the formulas above do not take into account the susceptibility of the host material, 
which is not negligible. Assuming that the host semiconductor at frequencies well below 
the band gap has a dielectric constant , the real part of the dielectric function of the doped 
semiconductor becomes (see “Weak absorption approximation” in Appendix H)  
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while the imaginary part remains the same. This leads to a similar expression for  but 
scaled by the refractive index of the host nh=, giving 
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The form of the free-hole absorption in p-type semiconductors is less well defined, as it 
depends in the band structure as well as the hole density.  In semiconductors with equal 
numbers of electrons and holes, the free hole absorption dominates. 
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Semiconductors of reduced dimension 

 
Figure 14.19 

Semiconductors can now be artificially structured on nanometer scales.  Quantum wells 
are layered semiconductor structures with alternate layers of materials with different 
energy gaps.  The layers can be so thin as to confine the motion of the electrons 
perpendicular to the layers so that only certain quantized energy states are allowed.  Motion 
in the other 2 dimensions is still like for a bulk semiconductor.  However, the density of 
states is changed.  It is left as an exercise to calculate this, but the result is that the density 
of states becomes step-like. 
 

 
Figure 14.20 

Because the energies associated with motion perpendicular to the wells are quantized, for 
each of these quantized energy states, there is a whole band of energies associated with 
motion in the other two dimensions. These are referred to as “sub-bands” 
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Figure 14.21 

As a result, the density of states, and hence the absorption spectrum, takes on the shape of 
a staircase, with n steps of energy  n2, as shown below.   
 
 

 
Figure 14.22 

A density of states of this type gives very strong enhancement of the absorption and 
emission of light at the very lowest photon energies.  This can lead to very low-threshold 
semiconductor laser operation.  Reducing the dimensionality further can further enhance 
these effects.  For example, “quantum wires”, which allow only 1-D motion of electrons 
gives a density of states proportional to E-1/2. Meanwhile,  “quantum dots” confine motion 
in all dimensions, so that the semiconductor nanoparticles are rather like large atoms, with 
a density of states that looks like a series of narrow lines (i.e. Dirac delta functions). 
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Chapter 15 – From dipole radiation to refractive index 
 
In several of the model descriptions of refractive index that were discussed in previous 
chapters, we treated matter as an array of atoms that are polarized by an EM wave. These 
induced dipoles in turn radiate a field that interferes with the incident field so as to produce 
refraction (phase shifting of the incident wave) and perhaps absorption (attenuation of the 
incident wave.) In Chapter 1 this was discussed qualitatively. In the present chapter we will 
examine the radiated field from an oscillating dipole in more detail, and look how the 
addition of dipole radiation from multiple dipoles gives rise to a macroscopic refractive 
index. A more extensive description of these arguments is given in Wooten, Chapter 2. 

Mathematical description of dipole radiation 

To analytically describe how a large collection of driven oscillating dipoles adds up to a 
refractive index, we first need to mathematically describe dipole radiation of an isolated 
oscillating dipole. We will describe our point dipole as an oscillating current localized at a 
point in space (i.e. a current density described by a delta function in space), and then apply 
Maxwell’s equations to derive the magnetic and electric field components around the 
dipole. To facilitate our analysis, we will make use of the vector potential, A.  
 

The vector potential 

There is a general vector theorem that states for a vector field V, we always have 
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. From Maxwell’s equations we know that 0 B


 which implies that if 
we construct a vector potential, A, such that 
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then we automatically satisfy 0 B


. Since in this approach B is derived from the 
rotation of A, one can actually define A in different ways, as long as the rotation of A is 
not affected. We use the form of A known as the “Coulomb gauge” or “transverse gauge” 

where 0 A


. In the following we will derive a wave equation for A which will we 
expressed in terms of current density. From Maxwell’s equations we have 
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Taking the time derivative on each side, we obtain an expression for dE/dt:  
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where we have used that E and A are divergence-free (‘if the rotations are equal, the terms 
could still have different divergence, however ·E=0 in the absence of free charge and 
·A=0 in the Lorentz Gauge’). Substituting the expression for dE/dt into  
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and applying  
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we find the following wave equation for A in the Coulomb gauge is 
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Here we have assumed that we will be looking at transverse wave, implying that only the 

component of J normal to the direction of propagation ( J


) is relevant. This equation has 
a general solution: 

, (15.7) 

showing that the appearance of a finite vector potential at point r is due to the current at a 
point r’ at an earlier time, which satisfies causality. This expression can be used to find the 
dipole radiation field.  
 
We assume a “point dipole”, placed at the origin: 
 

 
Figure 15.6 

The time dependence is chosen to be harmonic, and since this is a “point dipole” placed at 
the origin, the description of the dipole includes a delta function around r=0:  
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Associated with this dipole is a current density at r=0: 
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The component of the current that generates transverse components of A is given by 
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Where  0p̂  is the component of the unit vector that is perpendicular to r: 
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Figure 15.7 

It follows that  

   00 ˆˆˆˆ prrp  , (15.11) 

which has the magnitude of cos() (note:  is defined relative to the horizontal in the 
sketch). A polar plot of this angular dependence of the magnitude of A is sketched below: 
 

 
Figure 15.8 

Now we can substitute for J


 in our solution for A to get 
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Based on this solution we can now extract E according to  
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where again we used the Lorentz Gauge. This results in the following description of the 
radiated electric field from the induced dipole: 
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Dipole patternSpherical wave

 
We will be calculating the radiated power, which means finding the Poynting vector, which 
in turn requires us to find the magnetic field. In isotropic media we have the following 
relation between E and B: 
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c
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1
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 (15.15) 

where in the last step we used the fact that kr ˆˆ  for a point dipole placed at the origin. 
The direction of B is now related to the previously obtained direction of E according to 

   00 ˆˆˆˆˆˆ prprrr  . (15.16) 

This gives us the following description of the magnetic flux resulting from a harmonic 
point dipole placed at the origin:    
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The expressions for E and B now allow us to calculate the Poynting vector and the radiated 
power emitted by the dipole.  

Effect of re-radiated field from induced dipoles 

We are interested in the case where a plane wave is incident on a polarizable atom or 
molecule. This induces an oscillating dipole which radiates a field that interferes with the 
incident field, as shown below. 
 

 
Figure 15.9 

From the Lorentz model we have determined the magnitude of the induced dipole to be 
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Note that this description leaves open the possibility of an anisotropic polarizability, which 
is relevant in the description of molecules. The complete radiation pattern that develops 
due to the induced dipole is caused by the sum of the incident field, EI, and the field re-
radiated by the dipole (the scattered field), ES. Hence the total Poynting vector is 
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The last step can be understood by requiring energy conservation. Energy conservation 
requires that the integral of the Poynting vector across a spherical surface around the dipole 
should produce a total emitted power of zero. The first term EIBI clearly represents the 
power in the incident plane wave, which integrates to zero. The final term clearly represents 
the total power radiated by the dipole. For energy conservation to be satisfied, the cross 
terms must add up to a negative quantity if there is finite scattered power. This suggests 
that finite scattering is accompanied by a finite loss term representing absorption.  
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Since      2
00 cosˆˆˆˆˆˆ rprprr  , then the time average of the Poynting vector for 

the scattered light is 
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The scattered time-averaged power is then given by integrating over all directions of 
propagation: 
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and since, 
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then, 
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Hence, in the limit of  << 0, the scattered power is proportional to 4 or -4 – this is 
known as Rayleigh scattering. 
 
We can also define a molecular scattering cross section, scatt() : 
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where   iD 22
0)( . Here, we have not done an average over molecular 

orientations.  

Absorbed Power 

Since the scattered field is weak compared to the incident field, we can treat the scattered 
intensity as being negligible compared to the incident. Hence the transmitted irradiance is 
primarily affected by Sabs, which is the term that describes interference between the incident 
and scattered fields. We will not take the time to go through the math here, only look at the 
result, as sketched in the figure below. This shows that the time average of Sabs, i.e. <Sabs>t, 
oscillates rapidly with angle  around the dipole for most angles, but behind the dipole 
<Sabs>t varies slowly and is negative, as shown in the polar plot below. (From Hopf & 
Stegeman, chapter 4) 
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Figure 15.10 

Hence, the effect of the dipole is to impress a small “shadow” on the transmitted field 
behind it. If we integrate the outward-flowing component of <Sabs>t over all angles, the 
result is the total absorbed power, Pabs, i.e. 
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, (15.29) 

where the integral is over all solid angle . This yields, 
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Now we may define a molecular absorption cross-section abs(), that relates the absorbed 
power to the incident irradiance, by 

tIabsabs SP  . (15.33) 

Hence   
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Since  

2

02
1

II EcS  ,  (15.35) 

we obtain 
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where the averaging is now over all angles between the dipole coordinates and the applied 
field. For a medium containing randomly oriented molecules, (i.e. isotropic), we have 

already seen that  
3

1ˆˆ
2

0 


IEp . 

Since Pabs is an absorbed power per molecule, we can find the net absorbed power per unit 
volume as N Pabs = NabsSI. But the power absorbed per unit volume for a plane wave is 
just –dSI/dz. Hence 

Nz
I

z
II

IIabs
I

eSeSzS

SSN
dz

dS





 



)0()0()(

 (15.37) 

Hence, the absorption coefficient is given by 

Nabs )()(   . (15.38) 

This result makes sense in terms of our result for abs() above, as in the weak susceptibility 
approximation, ()=(c/)”(). 

Complex refractive index for a sheet of induced dipoles 

Unlike absorption, we cannot calculate the refractive index from the field of a single dipole. 
We must look at the field due to an ensemble of induced dipoles. To calculate the refractive 
index (real and imaginary), we look at the field produced by a sheet of dipoles all induced 
by the same incident plane wave. 
 

 
Figure 15.11 
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Summing over the NAdz dipoles in the sheet, we find (see Hopf & Stegeman) that the net 
radiated field is also a plane wave, described some distance behind the sheet by:  
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where the averaging is over molecular orientations. 
 
Note that the factor i in both field terms means that the radiated field, ER is 90 out of phase 
with the oscillation phase of the dipole. This implies that for a real p0 and a cosinusoidal 
incident field, the reradiated field is sinusoidal. Hence in the absence of loss, the reradiated 
field is 90 out of phase with the applied field. For a very weak reradiated field (always the 
case), this translates to a phase shift on the incident field, rather than an amplitude change. 
 
 
 
 
 
 

Figure 15.12 

For the Lorentz oscillator model given above, we find 
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where the averaging is over the molecular orientations. 
Now the total change E in field amplitude E(z) after a propagation distance of z is, 
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The second step makes use of exp(x) 1+x for small real x. 
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We also know 

I
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Comparing this with equation 15.42 gives the following expression for refractive index: 
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And therefore 
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which is the Lorentz oscillator model result, including orientational averaging. 
 
Clearly, then, the phase of the induced dipoles, and hence the phase of the re-radiated field, 
dictates the optical properties of the material.  On resonance, the oscillators are /2 out of 
phase with the driving field. The re-radiated field is shifted by yet another /2 upon 
propagation, so that ER is  out of phase with EI. 
 
 
 
 
 
 
 

Figure 15.13 

Clearly, we may extend these arguments to gain. If the phase of the oscillator is -/2, then 
the radiated field will add to EI. 
  

EI 

ER Resultant 
field Lossy oscillator – at 

resonance 
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Appendix A – Vector relations and theorems 
 
Unit vectors (Cartesian) 

𝑥ො = (1,0,0), 𝑦ො = (0,1,0), 𝑧̂ = (0,0,1) 

Vector  

𝐹⃗ = ൫𝐹௫ , 𝐹௬ , 𝐹௭൯ = 𝐹௫𝑥ො + 𝐹௬𝑦ො + 𝐹௭𝑧̂ 

Vector field: if a field E has a direction at every point in space, is called a vector field, 
which is written as 𝐸ሬ⃗ (𝑥, 𝑦, 𝑧) or 𝐸ሬ⃗ (𝑟) where 𝑟 = (𝑥, 𝑦, 𝑧). A time depent vector field is 
written as 𝐸ሬ⃗ (𝑟, 𝑡). 
 
Dot product  

𝐴 ⋅ 𝐵ሬ⃗ = 𝐴௫𝐵௫ + 𝐴௬𝐵௬ + 𝐴௭𝐵௭ 

Cross product  

𝐴 × 𝐵ሬ⃗ = ൫𝐴௬𝐵௭ − 𝐴௭𝐵௬ , 𝐴௭𝐵௫ − 𝐴௫𝐵௭, 𝐴௫𝐵௬ − 𝐴௬𝐵௫൯ = ቮ
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with n̂ the unit vector normal to surface S 
 
For a scalar field V(x,y,z), the gradient is a vector field defined as 
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The operator ‘del squared’ is called the Laplacian. When acting on a scalar field V(x,y,z) 
the result is given by  
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When operating on a vector field ),,( zyxE


, del squared is called the vector Laplacian, 
given by  
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For any vector field ),,( zyxE

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For conservative fields only:  

   sdFdvF
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   (Divergence Theorem or Gauss’ theorem) 

   ldFSdF


  (Stokes’ Theorem) 

 

Vector fields 

The electric field E has a direction at every point in space. This is written as 𝐸ሬ⃗ (𝑥, 𝑦, 𝑧) or 
𝐸ሬ⃗ (𝑟) where 𝑟 = (𝑥, 𝑦, 𝑧).  

Divergence 

The divergence of a vector field 𝐹⃗(𝑥, 𝑦, 𝑧) is given by the following relation:  

∇ሬሬ⃗ ⋅ 𝐹⃗ =
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඾ 𝐹⃗ ⋅ 𝑑𝑆 (2.32) 

where the double integral represents an integration across a closed surface, with enclosed 
volume V.  The term 𝑑𝑆 represents an infinitesimally small vector locally normal to the 
surface with a magnitude corresponding to a differential area (infinitesimally small area) 

on the surface. We have also used the ‘differential vector’ nabla  ∇ሬሬ⃗ = ቀ
డ

ௗ௫
,

డ

డ௬
,

డ

డ௭
ቁ.  
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Figure 2.1. Schematic of a spherical volume with surface S and a differential surface element 

vector 𝑑𝑆 locally normal to the surface. 

 
As you can see the divergence of a vector field is a number (i.e. a scalar) that represents 
the degree to which there is a net change in the vector length as we move along its direction. 
In a way it describes the ‘outwardness’ of the vector field.  

Gauss’ Theorem (or Divergence Theorem) 

Electric fields and magnetic fields inside homogenous media represent a special class of 
vector fields known as conservative fields.xxxii Broadly speaking this means that electric 
fields cannot suddenly appear out of nowhere or discontinuously change direction inside a 
continuous medium. For such fields, any net divergence within a volume V must result in 
fields pointing out of the surface. This is captured by Gauss’ theorem: 

ශ ∇ሬሬ⃗ ⋅ 𝐹⃗𝑑𝑉 = ඾ 𝐹⃗ ⋅ 𝑑𝑆 (2.33) 

where dV represents an infinitesimal volume dV=dxdydz. 

Curl 

 








dF
s

nF
S

1
limˆ


     (2.34) 

n̂  unit normal to surface 
 

Stoke’s Theorem 

   ldFSdF


 (2.35) 

These and other vector relations are summarized in appendix C. 
 

                                                 
xxxii see e.g. http://mathworld.wolfram.com/ConservativeField.html 

𝑑𝑆 
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Figure 2.2 

 

  

surface 
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Appendix B – Maxwell’s Equations 
 
James Clerk Maxwell deduced a set of equations that describe the relation between charges, 
electric fields, and magnetic fields. Charge is described as smoothly distributed with charge 
density  (C/m3), which can contain contributions from free charge and polarization charge.  
 
The complete Maxwell Equations are as follows:  
 

𝛻 ⋅ 𝐸ሬ⃗ =
𝜌

𝜖଴
 

𝛻 ⋅ 𝐵ሬ⃗ = 0 

𝛻 × 𝐸ሬ⃗ = −
𝜕𝐵ሬ⃗

𝜕𝑡
 

𝛻 × 𝐵ሬ⃗ = 𝜖଴𝜇଴

𝜕𝐸ሬ⃗

𝜕𝑡
+ 𝜇଴ ቈ𝐽௙ +  𝛻 × 𝑀ሬሬ⃗ +

𝜕𝑃ሬ⃗

𝜕𝑡
቉ 

The latter two relations are often expressed in terms of magnetic field intensity H and 
displacement D, taking into account magnetization M, using the following relations. 
 

𝐷ሬሬ⃗ = 𝜖଴𝐸ሬ⃗ + 𝑃ሬ⃗  
 

𝐵ሬ⃗ = 𝜇଴൫𝐻ሬሬ⃗ + 𝑀ሬሬ⃗ ൯ 

Gauss’ law for B 

No magnetic monopoles:  following Gauss’ Law   

∇ሬሬ⃗ ⋅ 𝐵ሬ⃗ = 0 (2.36) 

i.e.   

   
vs

dvBsdrB


0
chargemagnetic

0
 (2.37) 

Ampere’s Law 

For magnetic fields, the flux density, B, is related to the magnetic field intensity, H and the 
induced magnetization, M, by 

 MHB


 0  (2.38) 

dt

D
JH free





 (2.39) 
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4 Maxwell equations  +  MHB

PED








0

0




  

 
(Henceforth we will use J in place of Jfree.) 
 
Current Sources 

dt

D
JH

 
  (2.40) 

 PE
dt

JM
B 













 0
0




 (2.41) 

dt

P

dt

E
MJB

 



 00000   

 
     free charge                magnetism                        bound or polarization 

current density                current density                             current density 
 
                           vacuum displacement 
                                   current density 
 

dt

E
J tot

 
 000   (2.42) 

or     

dt

E

c
JB tot

 


20

1  (2.43) 

where            

dt

P
MJJ tot

 
  (2.44) 
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Appendix C – Empirical descriptions of refractive index 

Sellmeier equations 

Sellmeier equations are essentially empirical fits to the actual refractive index of a material, 
using the result for ' for Lorentz oscillators as basic functions. Hence, Sellmeier equations 
are of the form 

 


j j

pjn
22

0

2
2 1)(




  

These equations are very useful ways of providing data on the refractive index of materials 
vs. wavelength, without the need for extensive tables.   They are usually valid only in high 
transparency spectral regions, far from resonances, where  is real.  Often, but not always, 
Sellmeier equation for a material may contain a pole (i.e. a resonance) at low frequency 
(0 << ) and one at very high frequency (0 >> ).  Hence one could write 

2

2
0

22
0

2

2
0

2
2 1)(










 p

j j

pjpn 


 


 , 

where,  2
0

2 /1   p  is more commonly written as . 

In practice, these equations are usually expressed in terms of wavelength:   

2
2

2
2

22
0

2
2 1)( 








 d

c

b
adAn

j j

j

j j

pj 





  



, 

so that coefficients a, bj, cj, and d may completely describe the refractive index vs. 
wavelength for a material.  There are usually only one or two values of j (i.e. only one or 
two resonances) in the Sellmeier equation for a given material. This may depend on the 
material and on the level of accuracy required.  To get an idea of the wide variety of 
Sellmeier equations, some Sellmeier equations are given in the following table from the 
OSA handbook of Optics: 
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For fused silica, a good fit can be obtained by using a 3-pole Sellmeier equation, with poles 
at approximately 9.9 m, 116 nm and 68 nm.  The contributions of the individual poles can 
be seen below: 
 

f1   0.6961663 
2




2

0.0684043
2



 f2   0.4079426 
2




2

0.1162414
2



 f3   0.8774794 
2




2

9.896161
2





Reference: Handbook of Optics (OSA)
(valid  0.21 - 3.71 m )n   1 f1   f2   f3  

0.01 0.1 1 10 100

2

0

2

f1 ( )

f2 ( )

f3 ( )



0.01 0.1 1 10 100
0

1

2

3

n ( )



1 2 3
1.4

1.45n ( )



 

Schott glass description (power series) 

n2 = a0 + a12 + a2-2 + a3-4 + a4-6 + a5-8 
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Hertzberger description (mixed power series and Sellmeier) 

 
42

22
0

22
0

2
2 


ED

CB
An 





  

Abbe number 

The Abbe number, d, is a very commonly used single-number measure of the dispersion 
of glasses.  It is defined by 

cf

d
d nn

n





1 , 

where nd is the refractive index at  = 587.6 nm (the sodium "d"-line), and nf and nc are the 
refractive indices at  =  486.1 nm and 656.3 nm, respectively.  Typical values are in the 
range 20 ~ 60.  A low Abbe number indicates high chromatic dispersion.  Some examples 
are given in the following table. 
 

Material Refractive index Abbe number 

Crown Glass 1.52 58 

Polycarbonate 1.59 31 

BK-7 1.52 62 

CaF2 1.433 94 
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Appendix D – Fourier transforms 
 
Time dependent fields can be represented as a sum of many oscillatory components, each 
with their individual angular frequency . In this text, we use the following convention 

𝐸(𝑡) = න 𝐸(𝜔)𝑒ି௜ఠ௧𝑑𝜔 
ஶ

ିஶ

 

If the time dependent signal E(t) is known, the Fourier amplitudes E() can be determined 
using 

𝐸(𝜔) =
1

2𝜋
න 𝐸(𝑡)𝑒௜ఠ௧𝑑𝑡

ஶ

ିஶ

 

Here E() is the Fourier transform of E(t), which is also written as E() = F[E(t)]. In this 
text, the only exception to the notation shown above is the susceptibility, which we define 
as  

𝜒(𝜔) = න 𝜒(𝑡)𝑒௜ఠ௧𝑑𝑡
ஶ

ିஶ

 

and conversely 

𝜒(𝑡) =
1

2𝜋
න 𝜒(𝜔)𝑒௜ఠ௧𝑑𝑡

ஶ

ିஶ

 

It can be shown that   

F[P(t)Q(t)] = C  F[P(t)]  F[Q(t)] 

Where the symbol  stands for the convolution operation. The prefactor C depends on the 
choice of the form of the Fourier transform. Under our definition of the Fourier transform, 
we have C=2. The convolution operation is defined as 

(𝐴𝐵)(𝜔) = න 𝐴(𝜔)𝐵(𝜔 − 𝜔ᇱ)𝑑𝜔′
ஶ

ିஶ

 

Important convolution relations are AB = BA,  and  A()()= A(). Here () 
represents the Dirac delta function, which is zero everywhere except when its argument is 
zero, and which is normalized according to  

න 𝛿(𝜔)𝑑𝜔
ஶ

ିஶ

= 1 
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Appendix E – Optical response: formulas and definitions 
 
Permittivity (linear) 

𝜖(𝜔) = 𝜖଴𝜖௥(𝜔) = 𝜖଴(1 + 𝜒௘(𝜔)) 

with r the complex dielectric function, and e the complex electric susceptibility. 

Permeability (linear) 

𝜇(𝜔) = 𝜇଴𝜇௥(𝜔) = 𝜇଴(1 + 𝜒௠(𝜔)) 

with r the relative permeability, and m the magnetic susceptibility.  

Wave vector (scalar notation) 

𝑘 =
2𝜋

𝜆
 

Light dispersion relation in isotropic materials 

𝑘ଶ = 𝜇𝜖𝜔ଶ = 𝑛 ቀ
𝜔

𝑐
 ቁ

ଶ

 

Complex dielectric function, link to complex index in absence of magnetic effects 

𝜖௥(𝜔) = 𝜖௥
ᇱ (𝜔) + 𝑖𝜖௥

ᇱᇱ(𝜔) = 𝜂(𝜔)ଶ 

Complex refractive index, link to dielectric function in absence of magnetic effects 

𝜂(𝜔) = 𝑛(𝜔) + 𝑖𝜅(𝜔) = ඥ𝜀௥(𝜔) 

Manual conversion between complex dielectric function and refractive index:  

𝜂ଶ = (𝑛 + 𝑖𝜅)ଶ = 𝑛ଶ − 𝜅ଶ − 2𝑛𝜅𝑖 = 𝜀௥ = 𝜀௥
ᇱ + 𝑖𝜀௥

ᇱᇱ 

𝜖௥
ᇱᇱ = 𝜒ᇱᇱ = 2𝑛𝜅 

𝜖௥
ᇱ = 1 + 𝜒ᇱ = 𝑛ଶ − 𝜅ଶ 

𝑛 = ඨ
1

2
(|𝜖௥| + 𝜖௥

ᇱ ) 

𝜅 = ඨ
1

2
(|𝜖௥| − 𝜖௥

ᇱ ) 

𝜅 =
𝜖௥

ᇱᇱ

2𝑛
=

𝜒ᇱᇱ

2𝑛
 

Phase velocity of an electromagnetic wave in isotropic medium: 

𝑣௣ =
𝜔

𝑘
= ඨ

1

𝜇𝜖
 

Phase velocity of an electromagnetic wave in vacuum: 

𝑐 = ඨ
1

𝜇଴𝜖଴
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Refractive index in isotropic materials 

𝑛 =
𝑐

𝑣௣
= ඨ

1

𝜇௥𝜖௥
  

Absorption coefficient 

𝛼 = 2𝜅
𝜔

𝑐
 

Group velocity in isotropic materials: 

𝑣௚ = ൬
𝑑𝑘

𝑑𝜔
൰

ିଵ

 

Plasma frequency for free electron gas: 

𝜔௣
ଶ =

𝑁𝑒ଶ

𝑚௘𝜖଴
 

Poynting vector: instantaneous flow of optical energy per unit area. 

𝑆 =
1

𝜇଴
𝐸ሬ⃗ × 𝐵ሬ⃗  

Irradiance: magnitude of the time averaged flow of optical energy per unit area  

𝐼(𝑊/𝑚ଶ) = หൻ𝑆(𝑡)ൿห =
1

2
𝑛𝑐𝜖଴𝐸଴

ଶ 

where the last step assumes a plane wave with field amplitude E0 in an isotropic medium. 

Electromagnetic energy density in vacuum: 

𝑢 =
1

2
𝜖଴𝐸ଶ +

1

2𝜇଴
𝐵ଶ 

Reflection coefficient under normal incidence from air on planar surface 

𝑅 =
(𝑛 − 1)ଶ + 𝜅ଶ

(𝑛 + 1)ଶ + 𝜅ଶ
 

Reflection coefficient from medium 1 to medium 2 under normal incidence 

𝑅(𝜔) = ฬ
𝜂ଶ − 𝜂ଵ

𝜂ଶ + 𝜂ଵ
ฬ

ଶ

=
(𝑛ଶ − 𝑛ଵ)ଶ + (𝜅ଶ − 𝜅ଵ)ଶ

(𝑛ଶ + 𝑛ଵ)ଶ + (𝜅ଶ + 𝜅ଵ)ଶ
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Appendix F – Springs, Masses, and Resonances 
 
When discussing movement of bound masses (bound electrons, atoms in molecules, atoms 
in solids) we encounter mechanical resonances. To help understand and memorize the 
corresponding frequencies, this appendix shows all of them on one page.  

 
 
One mass on fixed spring:  
 
 
 
 
 
 
Two equal masses on shared spring 
 
 
 
 
 
 
Two unequal masses on shared spring 
 
 
 
 
 
One mass on two springs 
 
 
 
 
 
 
 
 
Unequal masses with shared springs on each side 
 
 
 
 

 
 
 
  

𝜔 = ඨ
𝐾

𝑚
 

𝜔 = ඨ
2𝐾

𝑚
 

𝜔 = ඨ
𝐾

𝜇
 

𝜔 = ඨ
2𝐾

𝑚
 

𝜔 = ඨ
2𝐾

𝜇
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Appendix G – Rules of thumb and orders of magnitude 
 
 
Photon energy vs. wavelength 
 

𝐸(𝑒𝑉) ≈
1.24

𝜆(𝜇𝑚)
 

 
Wavelength vs. photon energy 
 

𝜆(𝜇𝑚) ≈
1.24

𝐸(𝑒𝑉)
 

 
Energy vs. wavenumber 
 

𝐸(𝑚𝑒𝑉) ≈ 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑠/8 
 
 
 
Field strength vs. irradiance in medium with refractive index n 

𝐸௠௔௫(𝑉/𝑚) = ඨ
2𝐼

𝑛𝑐𝜖଴
≈ 27ඨ

𝐼

𝑛
 

 
Order of magnitude irradiance needed in vacuum for 1 V/nm (expect NLO response) 

𝐼 ≈ 10ଵହ  
𝑊

mଶ
= 1 

𝑃𝑊

𝑚ଶ
 

 
Irradiance order of magnitude for 1 V/nm, expressed in energy per area for a 1ns pulse  

𝐼 ≈
1 𝑀𝐽

𝑚ଶ
 nsିଵ =

1 𝐽

𝑚𝑚ଶ
 𝑛𝑠ିଵ =

1 𝜇𝐽

𝜇𝑚ଶ
 𝑛𝑠ିଵ 

 
Irradiance order of magnitude for 1 V/nm, expressed in energy per area for a 1ps pulse  

𝐼 ≈
1 𝑘𝐽

𝑚ଶ
 psିଵ  =

1 𝑚𝐽

𝑚𝑚ଶ
 𝑝𝑠ିଵ  =

1 𝑛𝐽

𝜇𝑚ଶ
 𝑝𝑠ିଵ 
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Appendix H – Approximations  
 
When calculating the optical properties of dilute materials (gases) or doped host materials, 
we need to consider changes to the real and imaginary susceptibility caused by the dopants. 
To find the refractive index of the doped material, calculate the complete dielectric function 
and use the relation 𝜂 = √𝜀௥. In some specific cases, we can use approximations that will 
simplify the work. 

Dilute medium approximation 

In dilute media ||  1 and therefore || << 1 . This allows us to use √1 + 𝑥 ≈ 1 +
ଵ

ଶ
𝑥 :   

𝜂 =  ඥ1 + 𝜒ᇱ + 𝑖𝜒ᇱᇱ ≈ 1 +
1

2
𝜒ᇱ +

1

2
𝑖𝜒ᇱᇱ  

This gives 

𝑛 ≈ 1 +
1

2
𝜒ᇱ       and       𝜅 ≈

𝜒ᇱᇱ

2
 

For dilute media we thus have a quick way of finding , given by 

𝛼 = 2𝜅𝑘଴ = 2𝜅
𝜔

𝑐
≈

𝜒ᇱᇱ𝜔

𝑐
 

Weak absorption approximation 

In a medium with a complex index with a magnitude || >> 1, the dilute limit no longer 
applies. In this case we cannot use   /2. Instead, we would have to use the exact relation 
2n = ’’. However, for weak absorption, we can derive an approximate relation for  and 
. 
 
To approximate  in this case, we split the term into a real prefactor and complex 
contribution with length ~1. In the case of a host with real dielectric function h and a small 
dopant susceptibility contribution d this can be done as follows:  

𝜂 = ට𝜀௛ + 𝜒ௗ
ᇱ + 𝑖𝜒ௗ

ᇱᇱ = ඥ𝜀௛ඨ1 +
𝜒ௗ

ᇱ

𝜀௛
+

𝑖𝜒ௗ
ᇱᇱ

𝜀௛
 

For low absorption (small imaginary contribution to  and r), we can approximate  as 

𝜂 ≈ ඥ𝜀௛ ቆ1 +
𝜒ௗ

ᇱ

2𝜀௛
+

𝑖𝜒ௗ
ᇱᇱ

2𝜀௛
ቇ 

For small dopant susceptibility we thus have  

𝑛 ≈ ඥ𝜀௛ ቆ1 +
𝜒ௗ

ᇱ

2𝜀௛
ቇ ≈ ඥ𝜀௛ = 𝑛௛ 

𝜅 ≈ ඥ𝜀௛

𝜒ௗ
ᇱᇱ

2𝜀௛
≈

𝜒ௗ
ᇱᇱ

2𝑛௛
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The latter expression looks like the exact relation:  2n  = ’’, but note that in the 
approximated form the denominator contains the index of the undoped material. This 
highlights the fact that our approximation assumes that the host index is not significantly 
affected by the dopants. This is NOT allowed if the dopant introduces strong absorption, 
or if the host already has a significantly complex index.  

Effect of dopants on reflection for weak absorption 

In many real world applications, we consider transmission through 1mm or even 1cm thick 
windows. In these cases, transmission < 1 can be due to either reflection losses or 
absorption losses (or scattering, diffraction, not covered in this class). When we add 
dopants to a non-absorbing, approximately non-dispersive material, we expect that the 
transmission will change due to dopant induced absorption, as well as due to any changes 
in the reflection coefficient. In many cases the reflection changes associated with dopants 
will be minimal.  
 
Example: if we consider a host with index n=2 (similar to the index of Si3N4), we find that 
a 1mm thick undoped Si3N4 slab would transmit a fixed fraction of (1-R)20.78 of the light. 
Now let’s assume that we include dopants that add a susceptibility of 0.008 + 0.008i. This 
would lead to a dielectric function  

𝜀ௗ௢௣௘ௗ = 𝜀௛௢௦௧ + 𝜒ௗ௢௣௔௡௧ = 4 + 0.008 + 0.008𝑖 = 4 ∗ (1 + 0.002 + 0.002𝑖) 

This gives a complex index that is approximately  

𝑛ௗ௢௣௘ௗ ≈ 2 + 0.001 + 0.001𝑖  

This change in complex index will have only a small effect on the total reflection: 

𝑅௨௡ௗ௢௣௘ௗ = ฬ
𝜂௦௟௔௕ − 𝜂௔௜௥

𝜂௦௟௔௕ + 𝜂௔௜௥
ฬ

ଶ

=
(𝑛௦௟௔௕ − 1)ଶ + 𝜅௦௟௔௕

ଶ

(𝑛௦௟௔௕ + 1)ଶ + 𝜅௦௟௔௕
ଶ = 0.11111 

vs.  

𝑅ௗ௢௣௘ௗ =
1.001ଶ + 0.001ଶ

3.001ଶ + 0.001ଶ
= 0.11126 

We see that the single interface reflection coefficient changes by only 0.14%. Compare this 
to the introduced absorption loss by this same dopant. After the 1mm slab we would have 
a total transmission of (1-R)2 e-z . Here  = 2 k0 which for  = 1 m gives us  = 
4×0.001/1um = 12.6 /mm, giving T=(1-R)2 e-12.6 = 2.7 × 10-6. We find that the dopant 
barely changes the reflection, but reduces the transmission almost to zero. We therefore 
conclude that if a dopant allows appreciable (> ~1%) transmission through a thick (mm, 
cm) sample, we can safely assume that the dopant does not have a significant effect on the 
magnitude of the refractive index and therefore the reflection coefficient. 
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Appendix I – Thermal distribution functions 
 
In many physical systems, the probability of certain states being populated (or ‘the chance 
of certain configurations being present’) depends on the temperature. Temperature is a 
measure of the kinetic energy in a system, which can take the form of movement of entire 
molecules, vibrations of molecules and solids, and rotations of molecules. 
 
Typically, states and configurations with high energy are unlikely to occur, unless the 
temperature is very high. This effect can be expressed in terms of thermal distribution 
functions f(E) that describe occupation (probability) of a state with energy E as a function 
of temperature. Depending on the type of system, these distribution functions have a 
different form. Below are commonly encountered distribution functions.  

Boltzmann probability distribution 

The probability distribution in systems of many classical particles (no quantum mechanical 
effects) that are in thermal equilibrium follow Boltzmann statistics. The probability of a 
particular particle having an energy E is proportional to a factor 

𝑓(𝐸) ∝  𝑒ିா/௞ಳ் 

with kB the Boltzmann constant kB  1.38 10-23 J/K. This shows that it is most likely to 
find a particle occupying a low energy state. We use this distribution in describing dipole 
orientation in polar liquids (Debye model) and indirectly in describing inhomogeneous 
broadening due to Doppler shift in gases with velocity distributions described by the related 
Maxwell-Boltzmann velocity distribution.  

Maxwell-Boltzmann velocity distribution 

According to statistical mechanics of ideal gases, atoms (or molecules) in the gas phase 
have an isotropic temperature-dependent velocity distribution. The probability of having a 
velocity in the range {v, v+dv} depends on the kinetic energy ½ mv2 according to the 
Boltzmann distribution, multiplied by a factor that considers the number of possible 
directions for this velocity which adds a factor 4v2, times a normalization constant. The 
resulting formula is the Maxwell-Boltzmann distribution:  

𝑓ெ஻(𝑣) = ቀ
𝑚

2𝜋𝑘𝑇
ቁ

ଷ/ଶ

4𝜋𝑣ଶ𝑒ି
ଵ
ଶ

௠௩మ/௞். 

Here fMB(v)dv represents the fraction of atoms in a gas with a thermal velocity magnitude 
between v and v+dv, with m the mass of the atom (or ion, or molecule), and k the 
Boltzmann constant. 

Bose-Einstein probability distribution 

In systems where a quantum mechanical description is used, two distinct thermal 
distributions are encountered. Quantum particles that are derived from forces are typically 
Bosons, which in this book are encountered as photons (‘electromagnetic force particles’) 
and phonons (‘mechanical forces particles’, related to molecular binding forces in solids). 
While not discussed in detail in this text, more generally, Bosons are particles with integer 
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spinxxxiii.  Bosons are special in the sense that a given Boson quantum state can in principle 
contain an unlimited number of Bosons. For example, for photons in a cavity this means 
that the fundamental optical mode can have an ‘unlimited’ number of photons and 
unlimited field strength. This means the occupation function f(E) for Bosons can exceed 1, 
and consequently the magnitude of the quantum mechanical expansion coefficient ‘a’ can 
exceed 1 (see e.g. Miller, QM for scientists and engineers). The corresponding thermal 
distribution function is of the form  

𝑓஻ா(𝐸) =
1

𝑒ா/௞் − 1
 

known as the Bose-Einstein distribution, where we have assumed that all energy is from 
the particles themselves. If there are other sources of energy involved, the energy term is 
replaced by E- with  the chemical potential. Note that the exponential term can reach 
any positive value from one to infinity, and consequently fBE can in principle range from 
infinity to zero (when the exponential term goes to infinity). Note that at energies well 
above kT this distribution function approaches the Boltzmann energy distribution. 

Fermi-Dirac probability distribution 

Particles that represent matter (electrons, protons, etc.) are usually Fermions.xxxiv Unlike 
Bosons they have half-integer spin. These particles follow the Pauli exclusion principle, 
which states that a (Fermionic) quantum state can only contain a single Fermion. 
Consequently, the thermal distribution functions that describe Fermions cannot exceed a 
value of 1. The corresponding distribution function is the Fermi-Dirac distribution:  

𝑓ி஽(𝐸) =
1

𝑒(ாିாಷ)/௞் + 1
 

where EF is known as the Fermi level, corresponding to the energy where the probability 
of a state being occupied is f(EF)=½. Note that at energies many times kT above the Fermi 
level this distribution function approaches the Boltzmann energy distribution. 
 

 
Scaled examples of Fermi-Dirac, Bose-Einstein, and Boltzmann energy distribution (left), and 

examples of the Fermi-Dirac distribution at four different temperatures.  

  

                                                 
xxxiii See https://en.wikipedia.org/wiki/Spin_(physics)  
xxxiv See https://en.wikipedia.org/wiki/Fermion  
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Appendix J – Wavefunctions of the Hydrogen atom 
 
The energy Eigensolutions of an electron in a Coulomb like binding potential are written 
as  

𝜓௡,௟,௠(𝑟, 𝜃, 𝜙) = 𝑅௡,௟(𝑟) 𝑌௟
௠(𝜃, 𝜙) 

The spherical Harmonics are given by the following relations:  

𝑌௟
௠(𝜃, 𝜙) = 𝐶௟,௠ 𝑃௟

௠(cos(𝜃))𝑒௜௠థ 

With normalization constant 

𝐶௟,௠ = ඨ
2𝑙 + 1

4𝜋

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
 

And  

𝑃௟
௠(𝑧) = (−1)௠(1 − 𝑧ଶ)௠/ଶ

𝑑௠

𝑑𝑧௠
𝑃௟(𝑧) 

Where  

𝑃௟(𝑧) =
1

2௟𝑙!

𝑑௟

𝑑𝑧௟
 [(𝑧ଶ − 1)௟]ଶ 

Are Legendre polynomials. 
 
The radial wavefunction depends only on n and l, and is given by  

𝑅௡,௟(𝜌) =  𝜌௟    ෍ 𝑎௞𝜌௞𝑒ିఘ/ଶ

௡ି௟ିଵ

௞ୀ଴

 

With 

𝜌 =
2

𝑛𝑎଴
𝑟 

And 

𝑎௞ାଵ =
𝑘 + 𝑙 + 1 − 𝑛

(𝑘 + 1)(𝑘 + 2𝑙 + 2)
𝑎௞ 

where a0 is the Bohr radius, given by 

𝑎଴ =
4𝜋𝜀଴ℏଶ

𝑚௘𝑒ଶ
 

With a numerical value of 𝑎଴ ≈ 0.529 Å.  
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Appendix K – OSE5312 Quantum Mechanics topics 
 
The full table of contents of Miller’s quantum book (1st edition) is shown below, showing 
topics that are covered in CREOL course OSE5312. Topics that are skipped or only briefly 
discussed in are shown in light gray. 
 

Chapter 1 Introduction  
1.1 Quantum mechanics and real life  
1.2 Quantum mechanics as an intellectual achievement  
1.3 Using quantum mechanics  
 
Chapter 2 Waves and quantum mechanics – Schrödinger’s equation  
2.1 Rationalization of Schrödinger’s equation  
2.2 Probability densities  
2.3 Diffraction by two slits  
2.4 Linearity of quantum mechanics: multiplying by a constant  
2.5 Normalization of the wavefunction  
2.6 Particle in an infinitely deep potential well (“particle in a box”)  
2.7 Properties of sets of Eigenfunctions  
2.8 Particles and barriers of finite heights  
2.9 Particle in a finite potential well  
2.10 Harmonic oscillator  
2.11 Particle in a linearly varying potential  
 
Chapter 3 The time-dependent Schrödinger equation  
3.1 Rationalization of the time-dependent Schrödinger equation  
3.2 Relation to the time-independent Schrödinger equation  
3.3 Solutions of the time-dependent Schrödinger equation  
3.4 Linearity of quantum mechanics: linear superposition  
3.5 Time dependence and expansion in the energy eigenstates  
3.6 Time evolution of infinite potential well and harmonic oscillator  
3.7 Time evolution of wavepackets  
3.8 Quantum mechanical measurement and expectation values  
3.9 The Hamiltonian  
3.10 Operators and expectation values  
3.11 Time evolution and the Hamiltonian operator  
3.12 Momentum and position operators  
3.13 Uncertainty principle  
3.14 Particle current  
3.15 Quantum mechanics and Schrödinger’s equation  
 
Chapter 4 Functions and operators  
4.1 Functions as vectors  
4.2 Vector space  
4.3 Operators  
4.4 Linear operators  
4.5 Evaluating the elements of the matrix associated with an operator  
4.6 Bilinear expansion of linear operators  
4.7 Specific important types of linear operators  
4.8 Identity operator  
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4.9 Inverse operator  
4.10 Unitary operators  
4.11 Hermitian operators  
4.12 Matrix form of derivative operators  
4.13 Matrix corresponding to multiplying by a function  
 
Chapter 5 Operators and quantum mechanics  
5.1 Commutation of operators  
5.2 General form of the uncertainty principle  
5.3 Transitioning from sums to integrals  
5.4 Continuous eigenvalues and delta functions  
 
Chapter 6 Approximation methods in quantum mechanics  
6.1 Example problem – potential well with an electric field  
6.2 Use of finite matrices  
6.3 Time-independent non-degenerate perturbation theory  
6.4 Degenerate perturbation theory  
6.5 Tight binding model  
6.6 Variational method  
 
Chapter 7 Time-dependent perturbation theory  
7.1 Time-dependent perturbations  
7.2 Simple oscillating perturbations  
7.3 Refractive index  
7.4 Nonlinear optical coefficients  
 
Chapter 8 Quantum mechanics in crystalline materials  
8.1 Crystals  
8.2 One electron approximation  
8.3 Bloch theorem  
8.4 Density of states in k-space  
8.5 Band structure  
8.6 Effective mass theory  
8.7 Density of states in energy  
8.8 Densities of states in quantum wells  
8.9 k.p method  
8.10 Use of Fermi’s Golden Rule  
 
Chapter 9 Angular momentum  
9.1 Angular momentum operators  
9.2 L squared operator  
9.3 Visualization of spherical harmonic functions  
9.4 Comments on notation  
9.5 Visualization of angular momentum  
 
Chapter 10 The hydrogen atom  
10.1 Multiple particle wavefunctions  
10.2 Hamiltonian for the hydrogen atom problem  
10.3 Coordinates for the hydrogen atom problem  
10.4 Solving for the internal states of the hydrogen atom  
10.5 Solutions of the hydrogen atom problem  
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Chapter 11 Methods for one-dimensional problems  
11.1 Tunneling probabilities  
11.2 Transfer matrix  
11.3 Penetration factor for slowly varying barriers  
11.4 Electron emission with a potential barrier  
 
Chapter 12 Spin  
12.1 Angular momentum and magnetic moments  
12.2 State vectors for spin angular momentum  
12.3 Operators for spin angular momentum  
12.4 The Bloch sphere  
12.5 Direct product spaces and wavefunctions with spin  
12.6 Pauli equation  
12.7 Where does spin come from?  
 
Chapter 13 Identical particles  
13.1 Scattering of identical particles  
13.2 Pauli exclusion principle  
13.3 States, single-particle states, and modes  
13.4 Exchange energy  
13.5 Extension to more than two identical particles  
13.6 Multiple particle basis functions  
13.7 Thermal distribution functions  
13.8 Important extreme examples of states of multiple identical particles  
13.9 Quantum mechanical particles reconsidered  
13.10 Distinguishable and indistinguishable particles  
 
Chapter 14 The density matrix  
14.1 Pure and mixed states  
14.2 Density operator  
14.3 Density matrix and ensemble average values  
14.4 Time-evolution of the density matrix  
14.5 Interaction of light with a two-level “atomic” system  
14.6 Density matrix and perturbation theory  
 
Chapter 15 Harmonic oscillators and photons  
15.1 Harmonic oscillator and raising and lowering operators  
15.2 Hamilton’s equations and generalized position and momentum  
15.3 Quantization of electromagnetic fields  
15.4 Nature of the quantum mechanical states of an electromagnetic mode  
15.5 Field operators  
15.6 Quantum mechanical states of an electromagnetic field mode  
15.7 Generalization to sets of modes  
15.8 Vibrational modes  
 
Chapter 16 Fermion operators  
16.1 Postulation of fermion annihilation and creation operators  
16.2 Wavefunction operator  
16.3 Fermion Hamiltonians  
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Chapter 17 Interaction of different kinds of particles  
17.1 States and commutation relations for different kinds of particles  
17.2 Operators for systems with different kinds of particles  
17.3 Perturbation theory with annihilation and creation operators  
17.4 Stimulated emission, spontaneous emission, and optical absorption  
 
Chapter 18 Quantum information  
18.1 Quantum mechanical measurements and wavefunction collapse  
18.2 Quantum cryptography  
18.3 Entanglement  
18.4 Quantum computing  
18.5 Quantum teleportation  
 
Chapter 19 Interpretation of quantum mechanics  
19.1 Hidden variables and Bell’s inequalities  
19.2 The measurement problem  
19.3 Solutions to the measurement problem  
19.4 Epilogue  
 
Background mathematics  
A.1 Geometrical vectors  
A.2 Exponential and logarithm notation  
A.3 Trigonometric notation  
A.4 Complex numbers  
A.5 Differential calculus  
A.6 Differential equations  
A.7 Summation notation  
A.8 Integral calculus  
A.9 Matrices  
A.10 Product notation  
A.11 Factorial  
 
Background physics  
B.1 Elementary classical mechanics  
B.2 Electrostatics  
B.3 Frequency units  
B.4 Waves and diffraction  
 
Vector calculus  
C.1 Vector calculus operators  
C.2 Spherical polar coordinates  
C.3 Cylindrical coordinates  
C.4 Vector calculus identities  
 
Maxwell’s equations and electromagnetism  
D.1 Polarization of a material  
D.2 Maxwell’s equations  
D.3 Maxwell’s equations in free space  
D.4 Electromagnetic wave equation in free space  
D.5 Electromagnetic plane waves  
D.6 Polarization of a wave  
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D.7 Energy density  
D.8 Energy flow  
D.9 Modes  
 
Perturbing Hamiltonian for optical absorption  
E.1 Justification of the classical Hamiltonian  
E.2 Quantum mechanical Hamiltonian  
E.3 Choice of gauge  
E.4 Approximation to linear system  
 
Appendix F Early history of quantum mechanics  
 
Some useful mathematical formulae  
G.1 Elementary mathematical expressions  
G.2 Formulae for sines, cosines, and exponentials  
G.3 Special functions  
 
Appendix H Greek alphabet  
 
Appendix I Fundamental constants 
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Appendix L – Recognizing material types  
 
The topics covered in this text as well as in additional study materials for CREOL course 
OSE5312 enable you to recognize materials based on their optical response, and 
conversely, allow you to predict trends in optical properties given material type or 
composition. Briefly: refractive index is due to light-induced charge motion  optical 
properties can be understood by knowing how many charges are involved, and how easily 
they can be moved by an electric field.  

Dilute gases 

- Index near one  
-  near zero 
- Mostly transparent 
- Narrow absorption lines 
- If gas molecules are polar or have dipole active vibrations  groups of sharp 

absorption lines associated with combined rotation-vibration transitions. 
In addition:  polar molecules  far infrared ‘rotation-only’ absorption lines 

Polar liquids 

- Large static r, broad absorption and drop in static r at GHz frequencies (Debye 
model) 

Insulators 

- low absorption throughout visible,      <   ~ 0.001.  
- Significant absorption onset above 4 eV   (‘significant’    > 0.001) 
- Normal dispersion throughout VIS 
- Typical refractive index   1.2  -  2   (few valence electrons per atom, strongly bound  

 little charge motion  small dipole moment  low    small index of 
refraction) 

- Low index  low single interface reflection:    R    1-10%  
- Compound insulators:  strong phonon-related resonances in infrared: Reststrahlen 

band, strong asymmetric absorption peak(s), large dispersion near T; large r(0)  

Semiconductors 

- Electronic absorption starts below 4eV  (  >  ~0.001) 
- Broad absorption bands 
- Normal dispersion below first strong absorption  (e.g. in the infrared) 
- Typical refractive index  2.5 – 4  at low frequency (weak spring and multiple 

valence electrons per atom    large motion of many charges  large index) 
- Typically: entirely real index at low frequency   
- Possibly  free carrier absorption at low frequency, giving    2  (due to dopants 

or thermally/optically excited charges) 
- High single-interface reflection coefficient , R  20-40%  



 210

- Compound semiconductors:  strong phonon-related resonances in infrared: 
Reststrahlen band, strong asymmetric absorption peak(s), large dispersion near T; 
large static r(0) 

- Direct gap:  sudden onset of interband absorption 
- Indirect gap:  gradual rise of absorption, peaks/steps related to phonon-assisted 

transitions at low temperature 
- Low temperature: exciton-related peaks near band-edge 
- Low temperature, doped semiconductors:  IR absorption due to dopant ionization 

Metals 

- Large  at low frequency   
- Real part of index less than one at low frequency  
- Real part of r negative at low frequency  
- Plasma frequency (r’ = 0  or   = n) typically in the VIS or near-UV 
- Large reflection coefficient (typically R > ~0.8) 
- Sometimes evidence of d-band transition (bump in ’) 
- Typical low-frequency (VIS-NIR) skin depth: tens of nm ( 107–108 /m) 
- No clear phonon resonances in optical response (metals cannot sustain polar 

bonds) 
 
 
 



 211

Appendix M – Fundamental physical constants 
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Index 
 

Abbe number, 188 
Absorbed Power, 174 
absorption coefficient, 25 
Absorption coefficient, 25 
absorption cross-section, 46, 175 
acceptors, 163 
Acceptors, 163 
AlSb, 140 
Ampere’s Law, 183 
angular momentum, 114 
anharmonicity coefficients, 71 
Anti-Stokes scattering, 120 
Approximations, 197, 209 
band gap, 153 
Band Structure, 149 
Bloch function, 151 
Born-Oppenheimer Approximation, 108 
Brillouin Zone, 133 
Cauchy Principal Value, 32 
Cauchy’s integral, 31 
causality, 27 
Centrosymmetric materials, 78 
Centrosymmetric potential, 72 
collision rate, 47 
complex conjugate, 21 
conduction band, 153 
Copper, 53 
Coulomb gauge, 169 
Curl, 179, 181 
cyclotron resonance frequency, 66 
de Broglie wavelength, 83 
Density of States, 156 
Diamond, 146 
Dipole active modes, 109 
dipole radiation, 169 
direct transition, 154 
direct-gap, 154 
dispersion, 29 
Divergence, 180 
Divergence Theorem, 181 
donors, 163 
Donors, 163 
Doped Insulators, 45 
Doppler broadening, 101, 103 
Drude conductivity, 55 
Drude model, 47 
effective mass, 153 
e-h pair, 162 
Eigenfunction, 83 
Eigenstate, 83 
enantiomers, 60 
energy Eigenfunction, 85 

exciton, 162 
Exciton absorption, 162 
Faraday Rotation, 69 
Fermi Golden Rule, 156 
Fermions, 153 
Franck-Condon principle, 118 
Free carrier absorption, 164 
free-carrier absorption, 49 
Full width at half maximum, 40 
FWHM, 40 
GaAs, 145 
Gallium Arsenide, 145 
Gauss’ Theorem, 181 
Gaussian lineshape, 104 
GeO2, 142 
Hamiltonian, 85 
HCl, 117 
Heaviside function, 27 
Hertzberger description, 188 
high frequency dielectric constant, 45 
Hindered rotational modes, 123 
hole, 162 
Impulse Response, 19 
Impurity absorption, 163 
InAs, 161 
indirect gap, 154 
inhomogeneous broadening, 101 
Insulators, 44 
interband absorption, 154 
Interband absorption, 155 
interband transitions, 51 
irradiance, 25 
isomer, 60 
ITO, 54 
joint density of states, 160 
KCl, 44 
kinetic energy operator, 84 
Kramers-Kronig relations, 27 

for index and absorption, 29 
for reflected Amplitude and phase, 33 
for susceptibility, 27 

k-space, 157 
Laplacian, 179 
Larmor Precession frequency, 66 
LCP, 64 
left-circularly polarized light, 64 
LiF, 144 
LiNbO3, 147 
Lithium Fluoride, 144 
Lithium Niobate, 147 
longitudinal optical phonon, 139 
Lorentz force, 66 
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Lorentz model, 35 
Lorentzian, 40 
Lorentzian lineshape, 104 
Lyddane-Sachs-Teller relationship, 139 
Microscopic theory of refractive index, 169 
Miller’s delta, 77 
Miller’s rule, 77 
moment of inertia, 114 
momentum Eigenfunction, 83 
momentum operator, 83 
Morse Potential, 105 
nabla, 180 
Noble Metals, 51 
Non-centrosymmetric materials, 72, 76 
Non-centrosymmetric potential, 72 
Nonlinear Optical materials, 71 
Normal modes, 106 
Optical Activity, 59 
oscillator strength, 40 
parity, 89 
phase velocity, 13 
phonons, 131 
plasma frequency, 39 
Plasma oscillations, 50 
point dipole, 170 
polar solids, 138 
Polaritons, 142 
Poynting vector, 172 
probability density, 82 
quantized energy states, 166 
quantum dots, 167 
Quantum wells, 166 
quantum wires, 167 
Raman active modes, 119 
Raman Scattering, 119 
RCP, 64 
reality condition, 21, 29 
reciprocal space, 157 
reduced mass, 112 
refractive index, 17 
Residue Theorem, 32 
Resonance Approximation, 40, 46 
Reststrahlen, 141 
right-circularly polarized light, 64 
Rotational Correlation time, 127 

rotational modes, 114 
rotatory coefficient, 59 
rotatory power, 65 
scalar wave equation, 12 
Scattered Power, 173 
scattering cross section, 174 
Schott glass description, 187 
second order susceptibility, 75 
selection rule, 89 
selection-rule for dipole rotational 

transitions, 114 
Sellmeier equations, 179, 185, 191, 193, 

195, 199, 200, 211 
semiconductors, 149 
Signum function, 27 
Silver, 52 
skin depth, 26, 55 
static dielectric constant, 45 
Stoke’s Theorem, 181 
Stokes scattering, 120 
sub-bands, 166 
third order susceptibility, 79 
Thomas-Reich-Kuhn sum rule, 40 
Time independent Schrödinger equation, 85 
Tin-doped Indium Oxide, 54 
transition matrix element, 156 
transparency, 44 
transverse gauge, 169 
transverse optical phonon, 137 
TRK Sum Rule, 40 
uncertainty relation, 99 
vacuum permeability, 11 
vacuum permittivity, 11 
vacuum wavelength, 13 
valence band, 153 
vector Laplacian, 180 
vector potential, 169 
Verdet coefficient, 70 
Vibrational transitions, 116 
vibration-rotation transitions, 117 
Voigt lineshape, 104 
wavefunction, 82 
Zeeman Splitting, 66 
zone center, 153 

 
 


