

Outline		(G
IntroductionSi sensitization for Er doped silicon photo	onics	
Experiments :		
 origin of Si sensitization – Si nanocrystal 	ls?	
effective excitation cross-section – proc	cessing dependent?	
 excitation wavelength dependence – broadband pump possible? 		
 thermal stability – gain stable for typical CPU temperatures? 		
- optimum \mathbf{C}_{Si} in low temperature process	samples – modified?	
Summary / outlook		
Nanophotonics and Near-field Optics Group http	://kik.creol.ucf.edu	slide 4

The ideal sensitized Er doped gain medium	(G
 Erbium properties High concentration of optically active Er High concentration of sensitized Er ions High Er emission efficiency / Er lifetime 	
 Sensitizer properties High pump absorption coefficient High power efficiency (small quantum defect) Large fraction of sensitizers coupled to Er High energy transfer efficiency 	
 Other requirements Low processing temperatures High intrinsic transparency at 1.5 um Stable operation up to at least T_{CPU} = 100 °C 	
I NIS IS A VERY DEMANDING SET OF REQUIREMENTS – Optimization challengin Nanophotonics and Near-field Optics Group http://kik.creol.ucf.edu	ng slide 8

Outline	Ś	
IntroductionSi sensitization for Er doped silicon photonics		
Experiments :		
 origin of Si sensitization – Si nanocrystals? 		
 effective excitation cross-section – processing dependent? 		
 excitation wavelength dependence – broadband pump possible? 		
 thermal stability – gain stable for typical CPU temperatures? 		
 optimum C_{si} in low temperature process samples – modified? 		
Summary / outlook		
Nanophotonics and Near-field Optics Group http://kik.creol.ucf.edu slide 1	0	

Outline	<u>(</u> je
IntroductionSi sensitization for Er doped silicon photoni	ics
 Experiments : origin of Si sensitization – Si nanocrystals? effective excitation cross-section – proces excitation wavelength dependence – broa thermal stability – gain stable for typical CP optimum C_{si} in low temperature process sa Summary / outlook	Few-atom clusters / LCs using dependent? adband pump possible? PU temperatures? umples – modified?
Nanophotonics and Near-field Optics Group http://kil	k.creol.ucf.edu slide 16

Outline		<u>S</u>
Introduction		
 Si sensitization for Er doped silicon photo 	nics	
Experiments :		
origin of Si sensitization – Si nanocrystals	? Few-atom cluster	rs / LCs
effective excitation cross-section - proce	essing dependent?	weakly
 excitation wavelength dependence – broadband pump possible? 		
 thermal stability – gain stable for typical CPU temperatures? 		
• optimum C_{Si} in low temperature process s	amples – modified	?
Summary / outlook		
Nanophotonics and Near-field Optics Group http://	/kik.creol.ucf.edu	slide 20

Outline		<u>S</u>
Introduction		
Si sensitization for Er doped silico	n photonics	
Experiments :		
 origin of Si sensitization – Si nanc 	crystals? Few-atom cluster	rs / LCs
effective excitation cross-section	– processing dependent?	weakly
 excitation wavelength dependence 	e – broadband pump poss	sible? Yes
 thermal stability – gain stable for t 	ypical CPU temperatures?	~Yes
• optimum C _{Si} in low temperature p	ocess samples – modified	?
Summary / outlook		
Nanophotonics and Near-field Optics Group	http://kik.creol.ucf.edu	slide 30

Er-doped Si-rich SiO ₂ : with NCs vs without NCs		
Parameter	with NC	without NC
High concentration of sensitized Er ions	No	Yes
\bullet Low ground state absorption at 1.5 μm	No	Yes
 Low confined carrier absorption at 1.5 µm 	No	Yes
Low scattering	No	Yes
Use Fr-doped Si-rich SiO ₂ anneale	ed at low temperatu	re
$(< 1000^{\circ}C)$ for device febrication		
(< 1000°C) for device fabrication		
Nanophotonics and Near-field Optics Group http:/	/kik.creol.ucf.edu	slide 34

