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Abstract: The linear and nonlinear optical properties of a composite 
containing interacting spherical silver nanoparticles embedded in a 
dielectric host are studied as a function of interparticle separation using 
three dimensional frequency domain simulations. It is shown that for a fixed 
amount of metal, the effective third-order nonlinear susceptibility of the 
composite χ(3)(ω) can be significantly enhanced with respect to the linear 
optical properties, due to a combination of resonant surface plasmon 
excitation and local field redistribution. It is shown that this geometry-
dependent susceptibility enhancement can lead to an improved figure of 
merit for nonlinear absorption. Enhancement factors for the nonlinear 
susceptibility of the composite are calculated, and the complex nature of the 
enhancement factors is discussed. 
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1. Introduction 

Recently a surge of interest has occurred in the theory, fabrication and characterization of 
metamaterials: micro- and nano-structured materials with properties significantly different 
from their constituents, for example negative index materials [1–3] and cloaking devices [4,5]. 
One specific thrust focuses on the design of highly nonlinear optical materials [6] based on 
nanocomposites. A possible approach to obtaining a large nonlinear optical response involves 
taking advantage of the strong local electric fields that can be achieved in and around plasmon 
resonant metal nanoparticles. Since the enhancement of the third-order nonlinear 
susceptibility scales with the fourth power of the electric field [7–9], these resonantly 
enhanced local fields can dramatically increase the nonlinear response of a composite 
compared to that of its constituent materials. Such plasmon enhanced metal-dielectric 
composites have many potential optical applications; for example for enhanced two-photon 
fluorescence [10–12] or as optical switches [13–15], and nonlinear optical absorption [16,17]. 
The latter application in particular requires materials that provide significant linear 
transmission, while exhibiting large optical absorption under high incident irradiance. Several 
studies have considered the nonlinear effective medium properties of such metal-dielectric 
composites either experimentally or theoretically. Reports indicate that while the addition of 
metal leads to significant linear absorption, the composite nonlinear response can be increased 
with respect to the linear absorption, for example, by increasing the volume filling fraction of 
the nanoparticles [18,19], by increasing host refractive index [20,21], and by increasing the 
aspect ratio of spheroidal metal particles [22]. However, no systematic studies appear to exist 
on the effect of interparticle interactions in metal dielectric composites. 

In the present study we investigate the nonlinear optical properties of a nanocomposite 
consisting of spherical silver nanoparticles arranged in a regular lattice, with a lattice spacing 
that is sufficiently small to prevent diffractive effects. The linear and nonlinear optical 
properties of these composites are studied as a function of interparticle interaction, which is 
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varied by changing the lattice spacing while maintaining a fixed metal volume fraction. The 
effective optical properties are determined using numerical simulations of the three 
dimensional electric field distribution in the composite under plane wave excitation. We show 
that changing the nanoparticle arrangement significantly increases the complex nonlinear 
refractive index with respect to the linear absorption. The feasibility of experiments 
demonstrating the presence of a surface plasmon enhanced host nonlinear optical response is 
discussed. 

2. Theory 

The composite linear dielectric function εc of an isotropic composite with a position dependent 
isotropic dielectric function ( ), rε ω  can be obtained based on a known linear electric field 

distribution of the form ( ), i tE r e ωω −  within a volume V using the following relation [23]: 

 ( )
( ) ( )

( )

2

2

, ,
.
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V
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ε ω ω
ε ω

ω
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Here ( ),E rω  is the position dependent complex electric field in the composite, the 

notation ...
V

 represents spatial averaging over volume V, and the notation 2E  represents 

taking the dot product E E⋅ . Note that this dot product yields a complex number with a phase 
angle that is twice that of the original electric field vector, which will become important in 
this study. For simplicity of notation, frequency and position arguments are omitted in the 
remainder of this manuscript. The definition of the effective dielectric function given in Eq. 
(1) follows from the requirement of equal energy density in the effective medium and the 
composite. Note that identical results can be obtained by using the more common assumption 
of equal electric displacement in the effective medium and in the composite, as was confirmed 
in numerical evaluation of simulated electric field data using both approaches (data not 
shown). In the case of a dilute random distribution of isolated isotropic spherical nanoparticles 
in an isotropic host, Eq. (1) leads to the well-known Maxwell Garnett result [24]. Here we 
consider binary composites containing spherical inclusions of a material with an isotropic 
dielectric function εin embedded in a host material with an isotropic dielectric function εh. We 
limit our study to composites in which the inclusions are arranged in a rectangular lattice, and 
consider optical excitation with electric fields aligned with one of the principal axes of the 
lattice. In this specific case, Eq. (1) provides only a single diagonal element of the dielectric 
tensor of the anisotropic effective medium. 

Analogous to the approach shown for the composite dielectric function, the effective 
complex third order nonlinear susceptibility of an isotropic composite χc

(3)(ω) can be 
determined based on a known linear electric field distribution for the composite using the 
following relation [9,23,25]: 

 ( )
( ) 2(3) 2

(3)
2 2

,
V

c

V V

r E E

E E

χ ω
χ ω =  (2) 

where ( )(3) , rχ ω  represents a position-dependent isotropic Kerr-type third order nonlinear 
susceptibility at the fundamental frequency. Equation (2) was derived based on the 
assumption that the nonlinear polarization response is sufficiently small to be considered a 
perturbation on the linear response. In this study we focus on the effect of local electric field 
enhancement on the nonlinear refractive and absorptive properties of the composite, and 
ignore higher harmonic effects such as third harmonic generation. For the more general case 
of an anisotropic composite under monochromatic excitation, χc

(3)(ω) must be represented by 
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a complex fourth rank tensor. In this study we derive the effective χc
(3) only for excitation 

along one of the principal axes of the simulated structure, here the x-direction. In this specific 
case Eq. (2) provides only the tensor component χc,xxxx

(3), which in the following will be 
denoted χc

(3). Given this simplified notation, it is important to keep in mind that the calculated 
susceptibilities do not represent an effective isotropic nonlinear susceptibility, but instead 
represent the calculated χc

(3) for excitation with a specific electric field direction with respect 
to a highly symmetric structure. 

For a binary composite in which the inclusion and host materials have an isotropic Kerr-
type third order nonlinear susceptibility χin

(3) and χh
(3) respectively, it can easily be shown that 

Eq. (2) can be written in the following form: 

 ( ) ( ) ( ) ( ) ( )3 3 3 3 3
in in in h h hf g f gχ χ χ= +  (3) 

where fin is the volume fraction of the inclusion in the composite, fh is the volume fraction of 
the host material given by fh = 1 - fin, and the factors gj

(3) represent susceptibility enhancement 
factors that satisfy the following relation: 

 

22

(3)
22

.jV
j

V V

E E
g

E E
=  (4) 

The subscript j represents either the inclusion (‘in’) or the host (‘h’). It is important to note 
that the numerator is averaged over a limited volume Vj indicating the volume of the inclusion 
or the host respectively. From Eq. (3) the factors gj

(3) can be seen to represent the 
enhancement of the third order susceptibility contribution from host and inclusion, relative to 
the value expected based on a homogeneous electric field distribution throughout the volume. 
Note that another common definition of the enhancement factor considers the volume fraction 
f as part of the enhancement factor, see e.g. Ref [8]. Although the latter approach certainly 
provides valid results, we favor the definition shown in Eq. (3) as it more clearly highlights 
the contribution of the electric field redistribution to the χ(3) enhancement, even for 
components with a small fill-fraction. 

Based on the calculated composite nonlinear susceptibility χc
(3) one can obtain the 

composite nonlinear refractive index η2,c = n2,c + iκ2,c where n2,c and κ2,c represent the real and 
imaginary parts of the nonlinear refractive index. In highly absorptive composites the 
conversion from χc

(3) to the nonlinear refractive index η2 must take into account linear loss in 
the composite [26] which has been shown to lead to the relation 

2 (3)
2, 0(3 / (4 | | ))(1 ( / ))c c c c cc i nη ε η κ χ= −  where ε0 is the permittivity of vacuum, c is the speed 

of light in vacuum, ηc is the complex linear refractive index of the composite, and nc and κc 
are the real and imaginary parts of ηc. The thus obtained nonlinear refractive index can be 
used to determine the nonlinear absorption coefficient of the composite βc according to βc = 
(4π/λ) κ2,c with λ the free space wavelength. Finally, using the calculated linear and nonlinear 
optical properties one can obtain the frequency dependent figure of merit for nonlinear 
absorption given by β/α. This figure of merit reflects the fact that high nonlinear absorption 
requires both a high β value as well as a low linear absorption to enable a long interaction 
length. This figure of merit is especially relevant in metal dielectric composites, where 
plasmon enhanced linear absorption will significantly affect the figure of merit. 

3. Simulation geometry 

For all simulations, we consider arrays of spherical silver nanoparticles embedded in a host 
with a frequency independent real refractive index of 1.5. This index is chosen as a typical 
value of commonly used host materials at visible frequencies, similar to that of for example 
SiO2 (n = 1.45), many organic polymers (n ~1.4-1.6), and soda lime glass (n = 1.52). For the 
linear silver dielectric properties we use a surface scattering corrected Drude model fit of 
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available literature values [27] given by εin = ε∞ - ωp
2/(ω2 + iω(Γ0 + Γs)) where ε∞ = 5.451, ωp 

= 1.474 × 1016 rad/s, and the bulk electron scattering rate Γ0 = 8.354 × 1013 s−1. The surface 
scattering rate Γs is given by Γs = Aυf/r = 2.8 × 1014 s−1, where A is set to 1, υf = 1.39 × 106 m/s 
is the Fermi velocity in silver, and r = 5 nm is the radius of the particle. This particle radius 
allows the use of sufficiently small interparticle separations to consider the composite as an 
effective medium in the wavelength range of interest. Note that this choice makes surface 
scattering the dominant contribution to the total electron damping. 

Three-dimensional frequency domain electromagnetic simulations were performed using 
Microwave Studio [28]. For all simulations, the incident electric field is polarized along the x 
direction and the light propagates along the z direction. Periodic arrays of nanoparticles are 
simulated by considering a rectangular unit cell that contains a single 10 nm diameter Ag 
sphere centered in the simulation volume. The length (Lz) of the unit cell is held fixed at 30 
nm, while the height (Lx) and width (Ly) are both varied while maintaining a constant unit cell 
volume of 30 nm × 24 nm × 24 nm. These dimensions correspond to a fixed inclusion volume 
fill fraction fin = 0.03. An infinite array of nanoparticles is simulated by taking advantage of 
symmetry planes, setting the tangential electric field components to zero in the y-z plane at x = 
0 and at x = Lx/2, and setting tangential magnetic field components to zero in the x-z plane at y 
= 0 and at y = Ly/2. In this way only a quarter of the unit cell needs to be considered in the 
simulations, reducing the required simulation time. Open boundary conditions are used along 
the z-direction. At the chosen length Lz of the simulation volume all particle-related near 
fields were found to be contained within the unit cell. Tetrahedral meshing is employed to 
simulate physically realistic electric field distributions that are virtually free of grid artifacts 
while using a reasonable number of mesh cells. The minimum cell size used was smaller than 
1 nm on a side. The simulated linear electric field distributions were analyzed using Eqs. (1) 
and 2 to compute the effective linear and nonlinear composite properties for x-polarized 
excitation. To study the effect of interparticle interactions on the optical properties, 
simulations were performed for five different geometries with dimensions Lx × Ly of 12.5 × 46 
nm2, 15 × 38.4 nm2, 24 × 24 nm2, 38.4 × 15 nm2, and 46 × 12.5 nm2, corresponding to an 
increasing edge-to-edge interparticle separation along the x-direction of 2.5 nm, 5 nm, 14 nm, 
28.4 nm, and 36 nm. These choices of longitudinal spacing Lx (along the incident electric 
field) and transverse spacing Ly (normal to the incident electric field) lead to significant 
changes of the interparticle interaction while maintaining a constant metal fill fraction. The 
selected interparticle separations are all significantly smaller than half the shortest optical 
wavelength considered, and consequently diffractive effects do not affect the optical 
properties of these composites. 
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Fig. 1. Surface plot of the x-component of the electric field in the x-y plane for (a) the square 
unit cell (Lx = 24 nm) close to resonance (ω = 4.64 × 1015 rad/s) and (b) a rectangular unit cell 
(Lx = 12.5 nm) close to resonance (ω = 4.0 × 1015 rad/s). The corresponding contour graph is 
shown on the lower x-y plane for both cases. Contour lines are separated by 2.5 V/m. 

4. Results and discussion 

Figure 1(a) shows the computed electric field distribution Ex in the x-y plane for Lx = 24 nm 
(square arrangement of nanoparticles) under excitation with x-polarized light with a field 
strength of 1 V/m at a frequency close to the nanoparticle surface plasmon resonance (ω = 
4.64 × 1015 rad/s). The vertical scale indicates the enhancement of the lateral electric field 
strength (Ex) relative to the incident field, and the field is shown at the phase angle for which 
maximum field enhancement is observed. Contour lines are spaced 2.5 V/m apart. The field 
distribution around the 10 nm diameter particle appears dipolar, and shows significant field 
enhancement (~15 × ) near the nanoparticle surface. Figure 1(b) shows the corresponding Ex 
distribution for a longitudinal spacing Lx = 12.5 nm (2.5 nm edge-to-edge spacing) excited 
near the collective plasmon resonance of these interacting particles (ω = 4.0 × 1015 rad/s). The 
maximum field enhancement is seen to be significantly increased to ~45 × at this reduced 
longitudinal interparticle spacing due to near-field interaction between adjacent particles. 
Consequently, an enhancement of the nonlinear optical response is expected in the regions of 
high field for such closely spaced geometries. Note that the geometry-related increase in peak 
electric field amplitude occurs predominantly in the small volume between the particles. 

Figure 2 shows the linear absorption coefficient as calculated using Eq. (1) based on the 
simulated three-dimensional electric field data, evaluated for several frequencies of the 
incident plane wave. Each of the curves in Fig. 2 corresponds to one of the five interparticle 
spacings considered. The locations of the symbols indicate the frequency samples at which the 
field distribution and the corresponding optical properties were evaluated. For comparison, the 
dashed line labeled ‘MG limit’ shows the analytical result obtained using Maxwell Garnett 
(MG) theory for this fill fraction. The observed absorption peaks are due to the resonant 
excitation of approximately dipolar plasmon modes on the metal nanoparticles, leading to 
resonantly enhanced energy dissipation. As the longitudinal interparticle separation is 
reduced, a red-shift is observed in the location of the plasmon resonance compared to the 
Maxwell Garnett result. Conversely, at large longitudinal interparticle spacing (and small 
transverse interparticle spacing) a blue-shift is observed. These are well known effects that 
can be understood in terms of near-field interactions between neighboring metal nanoparticles 
[29]. Consequently these resonance must be interpreted as collective plasmon resonances of 
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the lattice, rather than as individual nanoparticle plasmon resonances. The maximum linear 
absorption coefficient is seen to increase slightly as the longitudinal interparticle spacing is 
reduced. Finally, the analytical Maxwell Garnett result is seen to lie close to the numerically 
computed absorption coefficient for Lx = 24 nm (square arrangement), indicating that 
interparticle interactions are minimal in this specific geometry. 
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Fig. 2. Linear absorption of rectangular arrays of interacting spherical Ag particles. Symbols 
represent numerically computed values and are connected by a spline fit. The unit cells and the 
corresponding incident field polarization are shown schematically in the x-y plane. 

Figure 3 shows the complex geometry-dependent nonlinear susceptibility enhancement 
factor gh

(3) calculated based on the simulated three-dimensional electric field data using Eq. 
(4), for different frequencies of the incident plane wave. Figure 3(a) shows the phase angle of 
the complex enhancement factor, and Fig. 3(b) shows the magnitude of the enhancement on a 
logarithmic scale. The dashed curve shows the corresponding results calculated using an 
analytic expression for the third order nonlinear susceptibility of composites consisting of 
non-interacting particles [8]. The inset in Fig. 3(b) shows the real and imaginary part of the 
enhancement factor on a linear scale for the non-interacting particles. Note that the analytical 
curve closely resembles our numerically obtained results for Lx = 24 nm in terms of 
magnitude, shape, and resonance frequency, showing that inter-particle interactions only 
weakly affect the nonlinear response in this particular geometry. For all geometries a 
significant nonlinear susceptibility enhancement (g(3) > 1) is observed across a large frequency 
bandwidth near the plasmon resonance, with maximum enhancement occurring near the 
surface plasmon resonance of the structure. As the longitudinal interparticle spacing is 
reduced, the magnitude of the enhancement is seen to increase by more than an order of 
magnitude. Apparently the field enhancement obtained at small interparticle spacing results in 
a net increase of g(3), despite the fact that the enhancement occurs only within a small volume. 
While interparticle interaction does contribute to the enhancement, the field enhancement 
obtained due to the plasmon resonance provides the main contribution to the observed 
enhancement factors. The resonant nature of the enhancement has an important consequence: 
as can be seen in Fig. 3(a), the phase angle of the enhancement factor increases from 
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approximately 0° to 360° as the frequency is increased from below the plasmon resonance 
frequency to well above the resonance frequency. This behavior can be understood by 
realizing that near resonance the local electric fields inside and just outside the nanoparticles 
occur with respectively a −90° and + 90° phase delay with respect to the incident field. As can 
be seen in Eq. (4), the phase of the numerator of the enhancement factor scales with E2, and 
consequently the 90° phase difference of the linear fields on resonance lead to a 180° phase 
difference of the numerator in Eq. (4) compared to the phase of the average field. The 
complex nature of the enhancement indicates that in the presence of metal nanoparticles, a 
Kerr-type positive nonlinear refractive host can act as a nonlinear absorber, a negative 
nonlinear refractive medium, or a saturable absorber, depending on the frequency used 
[16,17]. Note that in experiments on metal-dielectric composites these effects may be 
overshadowed by nonlinearities introduced by the metal nanoparticles. 
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Fig. 3. Complex geometry-dependent nonlinear susceptibility enhancement factor gh

(3) for 
different frequencies of the incident plane wave, showing (a) the phase angle of the complex 
enhancement factor, and (b) the magnitude of the enhancement on a logarithmic scale. The 
dashed curves show the corresponding analytically obtained results for non-interacting particles 
(MG limit). The inset shows the real (solid line) and imaginary (dotted line) enhancement 
factors on a linear scale for the case of non-interacting particles. 

Figure 4 shows the phase (Fig. 4(a)) and magnitude (Fig. 4(b)) of the geometry-dependent 
nonlinear susceptibility enhancement factor gin

(3) of the inclusion, based on the same 
simulated three-dimensional electric field data used to generate Fig. 3. Note that while the 
phase dependence on frequency appears virtually identical to that observed in Fig. 3(a), the 
curves shown in Fig. 4(a) are in fact independently calculated values based on the internal 
electric fields, as opposed to the external electric fields that were used to generate Fig. 3(a). 
The dashed curves represent the corresponding analytical result for this fill fraction. This 
analytical result relies on a different equation than the one used in Fig. 3, since it also 
considers the internal fields [8]. In the limit of weak interparticle interaction (Lx = 24 nm), the 
magnitude of the enhancement gin

(3) is seen to be significantly larger than that of gh
(3) observed 

in Fig. 3. This is due to fact that the internal field enhancement that contributes to gin
(3) occurs 
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throughout the entire volume of the particle, while the external field enhancement that 
contributes to gh

(3) occurs only in a small fraction of the host volume. In stark contrast with the 
observations made in Fig. 3, the magnitude of the nonlinear susceptibility enhancement of the 
inclusion is found to be nearly independent of interparticle separation. This very different 
behavior is due to the fact that the internal field distribution is relatively unaffected by 
changes in the interparticle separation. 

Using the calculated linear effective dielectric function and nonlinear susceptibility 
enhancement factors gj

(3) it is now possible to evaluate the influence of the geometry-
dependent field enhancement on the figure of merit for nonlinear absorption. The figure of 
merit is given by βc/αc, where βc is the nonlinear absorption coefficient of the composite. The 
figure of merit indicates the inverse of the irradiance required to achieve a nonlinear 
absorption coefficient equal to the linear absorption coefficient. For the following analysis the 
silver nonlinear response is approximated by a Kerr-type response with χin

(3) = i*10−10 esu 
(1.75i × 10−17 V2/m2), while the host is assumed to be nonlinearly refractive with χh

(3) = 10−14 
esu (1.75 × 10−21 V2/m2). For clarity of presentation these values are assumed to be frequency 
independent near the nanoparticle resonance. Note that while metal nonlinear optical 
properties are often described in terms of an effective Kerr nonlinearity, the underlying 
physical mechanisms include non-Kerr type effects such as Fermi smearing and thermal 
nonlinearities. Consequently, the metal contribution to the composite nonlinearity in real-
world experiments may not reproduce the exact functional form derived here, however the 
predicted trends are expected to be observable. 
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Fig. 4. Complex geometry-dependent nonlinear susceptibility enhancement factor gin

(3) for 
different frequencies of the incident plane wave, showing (a) the phase angle of the complex 
enhancement factor, and (b) the magnitude of the enhancement on a logarithmic scale. The 
dashed curves show the corresponding results for non-interacting particles (MG limit). 

The total figure of merit for nonlinear absorption can be shown to be separable into a host 
contribution and an inclusion contribution. Figure 5(a) shows the host contribution to the 
figure of merit of the composite as a function of geometry. Despite the fact that a nonlinear 
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refractive host is assumed, a positive figure of merit for nonlinear absorption is observed 
across a significant frequency range due to the complex nature of the susceptibility 
enhancement factor near the plasmon resonance of the structure. As the longitudinal 
interparticle spacing is decreased from 46 nm to 12.5 nm, the peak figure of merit is seen to 
increase by more than an order of magnitude. This increase follows from the observed large 
increase in the effective nonlinear susceptibility (Fig. 3) due to near-field coupling between 
adjacent particles accompanied by additional field enhancement and confinement (Fig. 1), 
combined with the relatively small change in peak absorption coefficient as the interparticle 
spacing is modified (Fig. 2). These results demonstrate that while the presence of the metal 
nanoparticles does introduce significant absorption, the nonlinear optical absorption 
performance of a thin metal-dielectric composite can be improved significantly by modifying 
the spatial distribution of the metal. Figure 5(b) shows the contribution of the inclusion to the 
overall figure of merit of the composite as for the same geometries. The entirely imaginary 
χin

(3) assumed for the metal is seen to lead to a negative figure of merit for nonlinear 
absorption, indicative of a composite that exhibits saturable absorption. Experimental studies 
of metal-dielectric composites indeed show saturable absorption near the plasmon resonance 
[17,30]. As the longitudinal interparticle spacing is decreased, the magnitude of the figure of 
merit is seen to decrease slightly due to the observed weak increase in linear absorption as the 
longitudinal interparticle spacing is decreased (Fig. 2), and partly due to an additional 
frequency dependence introduced by the factor 1/λ in the conversion from χ(3) to β. 
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Fig. 5. Contributions to the figure of merit of the composite as a function of geometry 
considering separately (a) a nonlinear host, and (b) a nonlinear inclusion. 

It is important to note that the specific example shown in Fig. 5 assumes a weak nonlinear 
contribution, using equations derived to first order in nonlinear polarization. This assumption 
will cease to be valid in cases where a significant change in total absorption is achieved 
relative to the already present metal-induced absorption. Consequently the complete 
evaluation of plasmon-enhanced nonlinear absorbers will require calculations that go beyond 
the first order perturbation approach. Secondly, the high irradiances required to achieve 
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measurable changes in the absorption will induce significant heating and possibly melting and 
sintering of metal nanoparticles, adding an experimental challenge to studies of these effects, 
particularly for relatively slow measurements involving nanosecond pulses. Note also that for 
the values of χin

(3) and χh
(3) chosen in this example the metal nonlinear response provides by 

far the dominant contribution to the figure of merit. While the values used here were chosen 
mainly for illustrative purposes, their magnitudes are not unrealistic, and consequently the 
experimental observation of plasmon enhancement of nonlinear refractive or absorptive host 
properties are expected to be challenging. A potentially mitigating factor is that our choice of 
nanoparticle diameter as discussed previously leads to a significant predicted contribution of 
surface scattering to the total electronic damping. Consequently experimental studies using 
larger particles may produce a significantly stronger nonlinear optical response due to a 
reduction in surface scattering. Further optimization of particle arrangement and particle 
shape may lead to an experimentally observable enhancement of host-related nonlinear optical 
refractive and absorptive effects in real metal-dielectric composite materials. 

5. Summary and conclusions 

The effect of interparticle spacing on the linear and nonlinear optical properties of periodic 
metal-dielectric nanocomposites was discussed. Under the assumption that the materials 
exhibit a third-order Kerr type nonlinearity, it is shown that a reduced interparticle spacing 
along the incident field direction can lead to a significantly increased composite nonlinear 
optical response at frequencies near the plasmon resonance, while leaving the maximum linear 
optical absorption largely unaffected. These two findings lead to the observation of an 
enhanced figure of merit for nonlinear absorption by a nonlinear refractive host. 
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