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ABSTRACT  

Substrate-based tuning of plasmon resonances on gold nanoparticles (NP) is a versatile method of achieving plasmon 
resonances at a desired wavelength, and offers reliable nanogap sizes and large field enhancement factors. The 
reproducibility and relative simplicity of these structures makes them promising candidates for frequency-optimized 
sensing substrates. The underlying principle in resonance tuning of such a structure is the coupling between a metal 
nanoparticle and the substrate, which leads to a resonance shift and a polarization dependent scattering response. In this 
work, we experimentally investigate the optical scattering spectra of isolated 60 nm diameter gold nanoparticles on 
aluminum oxide (Al2O3) coated gold films with various oxide thicknesses. Dark-field scattering images and scattering 
spectra of gold particles reveal two distinct resonance modes. The experimental results are compared with numerical 
simulations, revealing the magnitude and phase relationships between the effective dipoles of the gold particle and the 
gold substrate. The numerical approach is described in detail, and enables the prediction of the resonance responses of a 
particle-on-film structure using methods that are available in many available electromagnetics simulation packages. The 
simulated scattering spectra match the experimentally observed data remarkably well, demonstrating the usefulness of 
the presented approach to researchers in the field.  
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1. INTRODUCTION  
Surface plasmon resonances of metallic nanoparticles on polarizable substrates represent one of the most broadly studied 
platforms for achieving controlled plasmon resonance wavelengths.1 The particle-on-film structure has been proven to 
provide a wide resonance tuning range and demonstrated as a potential candidate for many applications, including 
photovoltaics2 and sensing.3,4 The tunability of the plasmon resonance response is the result of the coupling between a 
metal nanoparticle and a nearby substrate,5 often referred to as the result of dynamic image charge formation in the 
substrate underneath the nanoparticle. The plasmon wavelength is known to be controllable by varying the spacing 
between the nanoparticles and the substrate,6,7 similar to the observed plasmon resonance shifts of nanoparticle dimer 
systems as a function of inter-particle separation.8 

In this study, we present an investigation of the plasmon resonances of 60 nm diameter gold nanoparticles on Al2O3 
coated gold film. The resonances are controlled using the thickness of the Al2O3 coating. The coupling between the 
nanoparticle and the substrate was modeled using numerical simulation. The simulations reproduce the resonance tuning 
of the nanoparticles on different Al2O3 coated substrates and reveal the polarization dependent coupling responses of the 
effective dipole moments of the nanoparticle and the underlying gold substrate. The numerical study supports the 
experimental observations and explains the ring-shaped scattering images of individual nanoparticles. The numerical 
approach presented in this work could be useful as an accessible method for calculating plasmonic responses of various 
single-particle-on-film systems.  
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2. EXPERIMENTS 
2.1 Experimental method  

Gold films with 50 nm thickness were deposited on glass cover slips with a 2 nm Cr wetting layer by thermal 
evaporation using an Edward FL 400 thermal evaporator. In the last deposition step, a thin aluminum film was deposited 
on top of the gold films without breaking the vacuum (base pressure < 10-5 mbar). The aluminum film becomes oxidized 
entirely upon exposure to ambient environment and turns into an Al2O3 coating. The Al2O3 film thickness was 
characterized using a Woollam M2000 Variable Angle Spectroscopic Ellipsometer. The deposition process was repeated 
for different gold substrates with similar thickness, while changing the aluminum film thickness. The Al2O3 coatings on 
four gold substrates were found to have a thickness of 1.3 nm, 1.5 nm, 2.2 nm, and 3.4 nm, respectively. Gold 
nanoparticle colloidal solution (BBInternational) diluted with ethanol to a concentration of 2×108 particles/mL with a 
mean particle diameter of 60.4 ± 2.6 nm was drop coated and left to dry on the Al2O3 coated gold substrates.  

Darkfield microscopy of nanoparticles on the samples was carried out using an Olympus IX71 inverted microscope 
equipped with a 50× dark-field objective (UMPlanFL 50× BD, N.A.=0.75) and standard dark-field optics. The darkfield 
images were recorded with two imaging CCD cameras; a Canon EOS 450D digital camera and a HSi-440C 
Hyperspectral Imaging System (Gooch & Housego). Single particle spectroscopy was conducted in the same set up but 
sending the scattering signal to a spectrometer (Horiba Jobin-Yvon iHR320 monochromator with Synapse CCD array). 
The scattering signals of individual particles were obtained from a ~8×8 μm2 collection area. In order to obtain a single 
particle scattering spectrum Isc(λ), the collected signal from a particle INP(λ) was measured, the collected signal from a 
nearby reference collection area IREF(λ) was subtracted, and the resulting background corrected signal was divided by the 
collected lamp spectrum IIN(λ), corresponding to the formula Isc=(INP – IREF)/IIN. Approximately one hundred single 
particle spectra were recorded from the Al2O3 coated gold substrates, including a reference gold substrate without Al2O3 
coating.   

 

2.2 Experimental Observation  

Figure 1(a, solid lines) shows scattering spectra of single gold nanoparticles on different Al2O3 coated gold substrates. 
The scattering spectra were selected from typical spectra measured in the experiment. The spectra show a clear blueshift 
upon increasing the Al2O3 coating thickness from 0 to 3.4 nm, with the main scattering peak shifting from 690 nm to 610 
nm.  In addition to the main scattering peak, there is a weak resonance peak ~550 nm present in all scattering spectra. 
Figure 1 (b) and (c) show two columns of dark-field microscopy images of the same gold nanoparticle from each 
substrate recorded with a Canon EOS 450D digital camera and a HSi-440C Hyperspectral Imaging System, respectively. 
To construct the images in Fig. 1(c), the HSi-440C recorded a set of spectral images of each nanoparticle then the 
spectral images were combined into a single false-color image. The color bar represents the false-color function as a 
function of wavelength  The processed images help distinguish nanoparticles scattering responses that have similar 
resonance wavelengths (down to 5 nm spectral resolution) that could not be distinguished using a conventional 
RGBcamera. Note that the images in Fig. 1(c) show dumbbell-shaped scattering patterns instead of the ring-shaped 
scattering patterns shown in Figure 1(b). This is the result of the known polarization dependent response of the HSi-
440C.  

Figure 1(b) and (c) show ring/dumbbell-shaped scattering patterns of single nanoparticles on different substrates. Among 
these images only Figures 1(b-i) present a clear central scattering signal at green wavelengths (real color image), while 
its corresponding scattering spectrum suggests the presence of strong scattering at red/NIR wavelengths. This is the 
result of a drop in transmission of IR cut filters in the Canon camera (T < 0.1 for wavelength longer than 680 nm). The 
observations in Fig. 1 indicate the co-existences of two resonance modes, lateral and vertical dipole modes. The origin of 
these two modes will be discussed in the following section. 
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cameras. The study explicitly demonstrates the origin of the characteristic particle appearance in scattering images and 
relative peak strength in scattering spectra of metal-particle-on-film structures. In addition, the method is based on a 
simple dipole integration technique facilitated by numerical simulation software which is easy to implement.  
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